On minimal singular values of random matrices with correlated entries

被引:9
作者
Goetze, F. [1 ]
Naumov, A. [1 ,2 ]
Tikhomirov, A. [3 ]
机构
[1] Univ Bielefeld, Fac Math, Bielefeld, Germany
[2] Moscow MV Lomonosov State Univ, Fac Computat Math & Cybernet, Moscow, Russia
[3] RAS, Dept Math, Komi Res Ctr, Ural Branch, Syktyvkar, Russia
关键词
Random matrices; circular law; elliptic law; non-identically distributed entries; Stieltjes transform; UNIVERSALITY;
D O I
10.1142/S2010326315500069
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Let X be a random matrix whose pairs of entries X-jk and X-kj are correlated and vectors (X-jk, X-kj), for 1 <= j < k <= n, are mutually independent. Assume that the diagonal entries are independent from off-diagonal entries as well. We assume that EXjk = 0, EX (2)(jk) = 1, for any j, k = 1,..., n and EXjkXkj = rho for 1 <= j < k = n. Let M-n be a non-random nxn matrix with parallel to M-n parallel to <= K-n(Q), for some positive constants K > 0 and Q >= 0. Let s(n) (X + M-n) denote the least singular value of the matrix X + M-n. It is shown that there exist positive constants A and B depending on K, Q, rho only such that P(sn(X + M-n) <= n (A)) = n (B). As an application of this result we prove the elliptic law for this class of matrices with non-identically distributed correlated entries.
引用
收藏
页数:30
相关论文
共 21 条
  • [1] Akemann G., 2011, The Oxford Handbook of Random Matrix Theory
  • [2] Bentkus V., 2003, LIET MAT RINK, V43, P444
  • [3] Around the circular law
    Bordenave, Charles
    Chafai, Djalil
    [J]. PROBABILITY SURVEYS, 2012, 9 : 1 - 89
  • [4] Bilinear and quadratic variants on the Littlewood-Offord problem
    Costello, Kevin P.
    [J]. ISRAEL JOURNAL OF MATHEMATICS, 2013, 194 (01) : 359 - 394
  • [5] Fyodorov YV, 1998, ANN I H POINCARE-PHY, V68, P449
  • [6] The Strong Elliptic Law. Twenty years later. Part I
    Girko, V. L.
    [J]. RANDOM OPERATORS AND STOCHASTIC EQUATIONS, 2006, 14 (01) : 59 - 102
  • [7] Girko V. L., 1985, TEOR VEROYATNOST PRI, V30, P640
  • [8] LIMIT THEOREMS FOR TWO CLASSES OF RANDOM MATRICES WITH DEPENDENT ENTRIES
    Goetze, F.
    Naumov, A. A.
    Tikhomirov, A. N.
    [J]. THEORY OF PROBABILITY AND ITS APPLICATIONS, 2015, 59 (01) : 23 - 39
  • [9] ASYMPTOTIC EXPANSIONS FOR BIVARIATE VON MISES FUNCTIONALS
    GOTZE, F
    [J]. ZEITSCHRIFT FUR WAHRSCHEINLICHKEITSTHEORIE UND VERWANDTE GEBIETE, 1979, 50 (03): : 333 - 355
  • [10] Gotze F., 2014, ARXIV14081732