On minimal singular values of random matrices with correlated entries

被引:11
作者
Goetze, F. [1 ]
Naumov, A. [1 ,2 ]
Tikhomirov, A. [3 ]
机构
[1] Univ Bielefeld, Fac Math, Bielefeld, Germany
[2] Moscow MV Lomonosov State Univ, Fac Computat Math & Cybernet, Moscow, Russia
[3] RAS, Dept Math, Komi Res Ctr, Ural Branch, Syktyvkar, Russia
关键词
Random matrices; circular law; elliptic law; non-identically distributed entries; Stieltjes transform; UNIVERSALITY;
D O I
10.1142/S2010326315500069
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Let X be a random matrix whose pairs of entries X-jk and X-kj are correlated and vectors (X-jk, X-kj), for 1 <= j < k <= n, are mutually independent. Assume that the diagonal entries are independent from off-diagonal entries as well. We assume that EXjk = 0, EX (2)(jk) = 1, for any j, k = 1,..., n and EXjkXkj = rho for 1 <= j < k = n. Let M-n be a non-random nxn matrix with parallel to M-n parallel to <= K-n(Q), for some positive constants K > 0 and Q >= 0. Let s(n) (X + M-n) denote the least singular value of the matrix X + M-n. It is shown that there exist positive constants A and B depending on K, Q, rho only such that P(sn(X + M-n) <= n (A)) = n (B). As an application of this result we prove the elliptic law for this class of matrices with non-identically distributed correlated entries.
引用
收藏
页数:30
相关论文
共 21 条
[1]  
Akemann G., 2011, The Oxford Handbook of Random Matrix Theory
[2]  
Bentkus V., 2003, LIET MAT RINK, V43, P444
[3]   Around the circular law [J].
Bordenave, Charles ;
Chafai, Djalil .
PROBABILITY SURVEYS, 2012, 9 :1-89
[4]   Bilinear and quadratic variants on the Littlewood-Offord problem [J].
Costello, Kevin P. .
ISRAEL JOURNAL OF MATHEMATICS, 2013, 194 (01) :359-394
[5]  
Fyodorov YV, 1998, ANN I H POINCARE-PHY, V68, P449
[6]   The Strong Elliptic Law. Twenty years later. Part I [J].
Girko, V. L. .
RANDOM OPERATORS AND STOCHASTIC EQUATIONS, 2006, 14 (01) :59-102
[7]  
Girko V. L., 1985, TEOR VEROYATNOST PRI, V30, P640
[8]   LIMIT THEOREMS FOR TWO CLASSES OF RANDOM MATRICES WITH DEPENDENT ENTRIES [J].
Goetze, F. ;
Naumov, A. A. ;
Tikhomirov, A. N. .
THEORY OF PROBABILITY AND ITS APPLICATIONS, 2015, 59 (01) :23-39
[9]   ASYMPTOTIC EXPANSIONS FOR BIVARIATE VON MISES FUNCTIONALS [J].
GOTZE, F .
ZEITSCHRIFT FUR WAHRSCHEINLICHKEITSTHEORIE UND VERWANDTE GEBIETE, 1979, 50 (03) :333-355
[10]  
Gotze F., 2014, ARXIV14081732