Genomic evidence for plant-parasitic nematodes as the earliest Wolbachia hosts

被引:42
作者
Brown, Amanda M. V. [1 ]
Wasala, Sulochana K. [1 ]
Howe, Dana K. [1 ]
Peetz, Amy B. [2 ]
Zasada, Inga A. [2 ]
Denver, Dee R. [1 ]
机构
[1] Oregon State Univ, Dept Integrat Biol, 3029 Cordley Hall, Corvallis, OR 97331 USA
[2] USDA ARS, Hort Crops Res Lab, 3420 NW Orchard Ave, Corvallis, OR 97330 USA
基金
美国农业部;
关键词
SOFTWARE PACKAGE; GENE-EXPRESSION; ET-AL; ENDOSYMBIONT; INFECTION; BACTERIA; BIOLOGY; ONCHOCERCICOLA; COLLEMBOLICOLA; MULTIHOSPITUM;
D O I
10.1038/srep34955
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Wolbachia, one of the most widespread endosymbionts, is a target for biological control of mosquito-borne diseases (malaria and dengue virus), and antibiotic elimination of infectious filarial nematodes. We sequenced and analyzed the genome of a new Wolbachia strain (wPpe) in the plant-parasitic nematode Pratylenchus penetrans. Phylogenomic analyses placed wPpe as the earliest diverging Wolbachia, suggesting two evolutionary invasions into nematodes. The next branches comprised strains in sap-feeding insects, suggesting Wolbachia may have first evolved as a nutritional mutualist. Genome size, protein content, %GC, and repetitive DNA allied wPpe with mutualistic Wolbachia, whereas gene repertoire analyses placed it between parasite (A, B) and mutualist (C, D, F) groups. Conservation of iron metabolism genes across Wolbachia suggests iron homeostasis as a potential factor in its success. This study enhances our understanding of this globally pandemic endosymbiont, highlighting genetic patterns associated with host changes. Combined with future work on this strain, these genomic data could help provide potential new targets for plant-parasitic nematode control.
引用
收藏
页数:14
相关论文
共 85 条
[1]   Multilocus sequence typing system for the endosymbiont Wolbachia pipientis [J].
Baldo, Laura ;
Hotopp, Julie C. Dunning ;
Jolley, Keith A. ;
Bordenstein, Seth R. ;
Biber, Sarah A. ;
Choudhury, Rhitoban Ray ;
Hayashi, Cheryl ;
Maiden, Martin C. J. ;
Tettelin, Herve ;
Werren, John H. .
APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 2006, 72 (11) :7098-7110
[2]   Detection of the Wolbachia protein WPIP0282 in mosquito spermathecae: Implications for cytoplasmic incompatibility [J].
Beckmann, John F. ;
Fallon, Ann M. .
INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY, 2013, 43 (09) :867-878
[3]   Small, Smaller, Smallest: The Origins and Evolution of Ancient Dual Symbioses in a Phloem-Feeding Insect [J].
Bennett, Gordon M. ;
Moran, Nancy A. .
GENOME BIOLOGY AND EVOLUTION, 2013, 5 (09) :1675-1688
[4]   Toward almost closed genomes with GapFiller [J].
Boetzer, Marten ;
Pirovano, Walter .
GENOME BIOLOGY, 2012, 13 (06)
[5]   Parasitism and Mutualism in Wolbachia: What the Phylogenomic Trees Can and Cannot Say [J].
Bordenstein, Seth R. ;
Paraskevopoulos, Charalampos ;
Hotopp, Julie C. Dunning ;
Sapountzis, Panagiotis ;
Lo, Nathan ;
Bandi, Claudio ;
Tettelin, Herve ;
Werren, John H. ;
Bourtzis, Kostas .
MOLECULAR BIOLOGY AND EVOLUTION, 2009, 26 (01) :231-241
[6]  
Bordenstein SR, 2003, J NEMATOL, V35, P266
[7]   Comparative Genomics of a Plant-Parasitic Nematode Endosymbiont Suggest a Role in Nutritional Symbiosis [J].
Brown, Amanda M. V. ;
Howe, Dana K. ;
Wasala, Sulochana K. ;
Peetz, Amy B. ;
Zasada, Inga A. ;
Denver, Dee R. .
GENOME BIOLOGY AND EVOLUTION, 2015, 7 (09) :2727-2746
[8]   Evidence for Metabolic Provisioning by a Common Invertebrate Endosymbiont, Wolbachia pipientis, during Periods of Nutritional Stress [J].
Brownlie, Jeremy C. ;
Cass, Bodil N. ;
Riegler, Markus ;
Witsenburg, Joris J. ;
Iturbe-Ormaetxe, Inaki ;
McGraw, Elizabeth A. ;
O'Neill, Scott L. .
PLOS PATHOGENS, 2009, 5 (04)
[9]   A simple and robust statistical test for detecting the presence of recombination [J].
Bruen, TC ;
Philippe, H ;
Bryant, D .
GENETICS, 2006, 172 (04) :2665-2681
[10]  
Bull James J., 2013, Evolution Medicine and Public Health, P197, DOI 10.1093/emph/eot018