Autonomous modal parameter estimation based on a statistical frequency domain maximum likelihood approach

被引:0
作者
Verboven, P [1 ]
Parloo, E [1 ]
Guillaume, P [1 ]
Van Overmeire, M [1 ]
机构
[1] Free Univ Brussels, Dept Mech Engn WERK, B-1050 Brussels, Belgium
来源
PROCEEDINGS OF IMAC-XIX: A CONFERENCE ON STRUCTURAL DYNAMICS, VOLS 1 AND 2 | 2001年 / 4359卷
关键词
D O I
暂无
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
This contribution, presents an autonomous modal parameter estimation procedure based on a statistical frequency-domain maximum likelihood approach. Using improved frequency-domain identification schemes, features such as high accuracy and confidence bounds for the estimated parameters and robustness for different types of test-data make an automation of the modal estimation process possible. Based on a statistical approach, adaptive pole selection criteria are developed. The new approach is illustrated for 2 experimental cases.
引用
收藏
页码:1511 / 1517
页数:5
相关论文
共 50 条
  • [21] Evolving autonomous modal parameter estimation
    Chhipwadia, KS
    Zimmerman, DC
    James, GH
    IMAC - PROCEEDINGS OF THE 17TH INTERNATIONAL MODAL ANALYSIS CONFERENCE, VOLS I AND II, 1999, 3727 : 819 - 825
  • [22] A maximum likelihood based carrier frequency estimation algorithm
    Bian, DM
    Zhang, GX
    Yi, XY
    2000 5TH INTERNATIONAL CONFERENCE ON SIGNAL PROCESSING PROCEEDINGS, VOLS I-III, 2000, : 185 - 188
  • [23] Evolving autonomous modal parameter estimation
    Chhipwadia, K.S.
    Zimmerman, D.C.
    James III, G.H.
    Shock and Vibration Digest, 2000, 32 (01):
  • [24] Maximum-likelihood parameter estimation in terahertz time-domain spectroscopy
    Mohtashemi, Laleh
    Westlund, Paul
    Sahota, Derek G.
    Lea, Graham B.
    Bushfield, Ian
    Mousavi, Payam
    Dodge, J. Steven
    OPTICS EXPRESS, 2021, 29 (04) : 4912 - 4926
  • [25] Maximum-likelihood based estimation of the Nakagami m parameter
    Cheng, JL
    Beaulieu, NC
    IEEE COMMUNICATIONS LETTERS, 2001, 5 (03) : 101 - 103
  • [26] Time domain maximum likelihood parameter estimation in LISA Pathfinder data analysis
    Congedo, G.
    Ferraioli, L.
    Hueller, M.
    De Marchi, F.
    Vitale, S.
    Armano, M.
    Hewitson, M.
    Nofrarias, M.
    PHYSICAL REVIEW D, 2012, 85 (12):
  • [27] Frequency domain maximum likelihood identification
    McKelvey, T
    Ljung, L
    (SYSID'97): SYSTEM IDENTIFICATION, VOLS 1-3, 1998, : 1637 - 1642
  • [28] SEA Parameter Estimation Based on a Modal Approach
    Ji, L.
    ADVANCES IN VIBRATION ENGINEERING, 2011, 10 (03): : 221 - 228
  • [29] A parameter estimation approach based on binary measurements using Maximum Likelihood analysis - Application to MEMS
    Kian Jafari
    International Journal of Control, Automation and Systems, 2017, 15 : 716 - 721
  • [30] Optimization method of maximum likelihood estimation parameter estimation based on genetic algorithms
    School of Marine Engineering, Northwestern Polytechnical University, Xi'an 710072, China
    J. Mech. Strength, 2006, 1 (79-82):