Autonomous modal parameter estimation based on a statistical frequency domain maximum likelihood approach

被引:0
|
作者
Verboven, P [1 ]
Parloo, E [1 ]
Guillaume, P [1 ]
Van Overmeire, M [1 ]
机构
[1] Free Univ Brussels, Dept Mech Engn WERK, B-1050 Brussels, Belgium
来源
PROCEEDINGS OF IMAC-XIX: A CONFERENCE ON STRUCTURAL DYNAMICS, VOLS 1 AND 2 | 2001年 / 4359卷
关键词
D O I
暂无
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
This contribution, presents an autonomous modal parameter estimation procedure based on a statistical frequency-domain maximum likelihood approach. Using improved frequency-domain identification schemes, features such as high accuracy and confidence bounds for the estimated parameters and robustness for different types of test-data make an automation of the modal estimation process possible. Based on a statistical approach, adaptive pole selection criteria are developed. The new approach is illustrated for 2 experimental cases.
引用
收藏
页码:1511 / 1517
页数:5
相关论文
共 50 条
  • [1] Accurate Parameter Estimation Using a Frequency Domain Maximum Likelihood Approach for SAR Processing
    Chen, Tao
    Ding, Yongfei
    Pang, Ruifan
    Gong, Cheng
    Xu, Dinghai
    Zhang, Hengyang
    PROCEEDINGS OF 2017 7TH IEEE INTERNATIONAL SYMPOSIUM ON MICROWAVE, ANTENNA, PROPAGATION, AND EMC TECHNOLOGIES (MAPE), 2017, : 457 - 461
  • [2] A multivariate maximum likelihood method for modal parameter estimation
    Lardies, J
    Larbi, N
    STRUCTURAL DYNAMICS, VOLS 1 AND 2, 1999, : 163 - 168
  • [3] Frequency domain sample maximum likelihood estimation for spatially dependent parameter estimation in PDEs
    van Berkel, Matthijs
    Vandersteen, Gerd
    Geerardyn, Egon
    Pintelon, Rik
    Zwart, Hans
    de Baar, Marco
    AUTOMATICA, 2014, 50 (08) : 2113 - 2119
  • [4] Modal parameter estimation from input-output Fourier data using frequency-domain maximum likelihood identification
    Verboven, P
    Guillaume, P
    Cauberghe, B
    Vanlanduit, S
    Parloo, E
    JOURNAL OF SOUND AND VIBRATION, 2004, 276 (3-5) : 957 - 979
  • [5] Parameter identification of fluid line networks by frequency-domain maximum likelihood estimation
    Zecchin, Aaron C.
    White, Langford B.
    Lambert, Martin F.
    Simpson, Angus R.
    MECHANICAL SYSTEMS AND SIGNAL PROCESSING, 2013, 37 (1-2) : 370 - 387
  • [6] On the equivalence of time and frequency domain maximum likelihood estimation
    Agueero, Juan C.
    Yuz, Juan I.
    Goodwin, Graham C.
    Delgado, Ramon A.
    AUTOMATICA, 2010, 46 (02) : 260 - 270
  • [7] Modified frequency and spatial domain decomposition method based on maximum likelihood estimation
    Hizal, Caglayan
    ENGINEERING STRUCTURES, 2020, 224
  • [8] An automatic frequency domain modal parameter estimation algorithm
    Vanlanduit, S
    Verboven, P
    Guillaume, P
    Schoukens, J
    JOURNAL OF SOUND AND VIBRATION, 2003, 265 (03) : 647 - 661
  • [9] Maximum likelihood slow frequency-selective fading channel estimation using the frequency domain approach
    Jiang, YM
    Sun, FW
    Baras, JS
    GLOBECOM '00: IEEE GLOBAL TELECOMMUNICATIONS CONFERENCE, VOLS 1- 3, 2000, : 955 - 959
  • [10] Parameter Estimation of Frequency Hopping Signals Based on Maximum Likelihood and Orthogonal Matching Pursuit
    Li, Yixing
    Wang, Furong
    PROCEEDINGS OF 2022 INTERNATIONAL CONFERENCE ON AUTONOMOUS UNMANNED SYSTEMS, ICAUS 2022, 2023, 1010 : 3397 - 3406