Implementing 2-descent for Jacobians of hyperelliptic curves

被引:91
作者
Stoll, M
机构
[1] Univ Dusseldorf, D-40225 Dusseldorf, Germany
[2] Max Planck Inst Math, D-53072 Bonn, Germany
关键词
D O I
10.4064/aa98-3-4
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
[No abstract available]
引用
收藏
页码:245 / 277
页数:33
相关论文
共 19 条
  • [1] [Anonymous], 1992, ALGEBRAISCHE ZAHLENT
  • [2] Rational points of the group of components of a Neron model
    Bosch, S
    Liu, Q
    [J]. MANUSCRIPTA MATHEMATICA, 1999, 98 (03) : 275 - 293
  • [3] Bosch S., 1990, NERON MODELS, P21
  • [4] The Magma algebra system .1. The user language
    Bosma, W
    Cannon, J
    Playoust, C
    [J]. JOURNAL OF SYMBOLIC COMPUTATION, 1997, 24 (3-4) : 235 - 265
  • [5] CASSELS JWS, 1996, PROLEGOMENA MIDDLEBR, V2
  • [6] CASSELS JWS, 1983, ARITHMETIC GEOMETRY, V1, P27
  • [7] Cremona J. E., 1997, Algorithms for modular elliptic curves, V2nd
  • [8] KANT V4
    Daberkow, M
    Fieker, C
    Kluners, J
    Pohst, M
    Roegner, K
    Schornig, M
    Wildanger, K
    [J]. JOURNAL OF SYMBOLIC COMPUTATION, 1997, 24 (3-4) : 267 - 283
  • [9] Cycles of quadratic polynomials and rational points on a genus-2 curve
    Flynn, EV
    Poonen, B
    Schaefer, EF
    [J]. DUKE MATHEMATICAL JOURNAL, 1997, 90 (03) : 435 - 463
  • [10] COMPUTING THE MORDELL-WEIL RANK OF JACOBIANS OF CURVES OF GENUS-2
    GORDON, DM
    GRANT, D
    [J]. TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1993, 337 (02) : 807 - 824