Design of Interval Type-2 Information Granules Based on the Principle of Justifiable Granularity

被引:24
作者
Zhang, Bowen [1 ,2 ]
Pedrycz, Witold [3 ,4 ,5 ]
Wang, Xianmin [6 ]
Gacek, Adam [7 ]
机构
[1] Xidian Univ, Sch Econ & Management, Xian 710071, Peoples R China
[2] Univ Alberta, Dept Elect & Comp Engn, Edmonton, AB T6R 2G7, Canada
[3] Univ Alberta, Dept Elect & Comp Engn, Edmonton, AB T6R 2V4, Canada
[4] King Abgudulaziz Univ, Fac Engn, Dept Elect & Comp Engn, Jeddah 21589, Saudi Arabia
[5] Polish Acad Sci, Syst Res Inst, PL-01447 Warsaw, Poland
[6] China Univ Geosci, Inst Geophys & Geomat, Hubei Subsurface Multiscale Imaging Key Lab, Wuhan 430074, Peoples R China
[7] Lukasiewicz Res Network Inst Med Technol & Equipm, PL-41800 Zabrze, Poland
基金
加拿大自然科学与工程研究理事会; 中国国家自然科学基金;
关键词
Fuzzy sets; Electronic mail; Optimization; Uncertainty; Numerical models; Complexity theory; Systematics; Coverage and specificity; principle of justifiable granularity; type elevation; type-2 information granules; FUZZY-LOGIC SYSTEMS; MOBILE ROBOT; SETS; UNCERTAINTY; CONTROLLERS; CONFIDENCE; MODELS; WORDS;
D O I
10.1109/TFUZZ.2020.3023758
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Information granules are concise abstract descriptors of data supported by experimental evidence. They summarize the data by forming a small collection of well justified information granule. Fuzzy sets of type-2 generalize type-1 fuzzy sets. In this article, we present an original design of interval type-2 information granules based on a collection of type-1 fuzzy sets by engaging the principle of justifiable granularity. This principle generates an information granule by maximizing a product of two generic characteristics of the granule, such as coverage and specificity. Given a collection of type-1 fuzzy sets, the result of the principle comes in a form of a single type-2 information granule. In general, we emphasize the effect of type elevation of information granules by stressing that a family of type-n information granules gives rise to a single type-(n+1) information granule. The overall optimization process is discussed along with a series of related optimization procedures. A series of experimental studies is included to illustrate the essence of the approach.
引用
收藏
页码:3456 / 3469
页数:14
相关论文
共 61 条
[1]   Multivariate modeling and type-2 fuzzy sets [J].
Aisbett, Janet ;
Rickard, John T. ;
Morgenthaler, David .
FUZZY SETS AND SYSTEMS, 2011, 163 (01) :78-95
[2]   Multiobjective Optimization and Comparison of Nonsingleton Type-1 and Singleton Interval Type-2 Fuzzy Logic Systems [J].
Cara, Ana Belen ;
Wagner, Christian ;
Hagras, Hani ;
Pomares, Hector ;
Rojas, Ignacio .
IEEE TRANSACTIONS ON FUZZY SYSTEMS, 2013, 21 (03) :459-476
[3]  
Castillo O, 2018, APPL COMPUT MATH-BAK, V17, P3
[4]   A generalized type-2 fuzzy granular approach with applications to aerospace [J].
Castillo, Oscar ;
Cervantes, Leticia ;
Soria, Jose ;
Sanchez, Mauricio ;
Castro, Juan R. .
INFORMATION SCIENCES, 2016, 354 :165-177
[5]   A comparative study of type-1 fuzzy logic systems, interval type-2 fuzzy logic systems and generalized type-2 fuzzy logic systems in control problems [J].
Castillo, Oscar ;
Amador-Angulo, Leticia ;
Castro, Juan R. ;
Garcia-Valdez, Mario .
INFORMATION SCIENCES, 2016, 354 :257-274
[6]   Designing Type-1 and Type-2 Fuzzy Logic Controllers via Fuzzy Lyapunov Synthesis for nonsmooth mechanical systems [J].
Cazarez-Castro, Nolie R. ;
Aguilar, Luis T. ;
Castillo, Oscar .
ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2012, 25 (05) :971-979
[7]   Type-2 fuzzy logic aggregation of multiple fuzzy controllers for airplane flight control [J].
Cervantes, Leticia ;
Castillo, Oscar .
INFORMATION SCIENCES, 2015, 324 :247-256
[8]   The fuzzy Delphi method via fuzzy statistics and membership function fitting and an application to the human resources [J].
Chang, PT ;
Huang, LC ;
Lin, HJ .
FUZZY SETS AND SYSTEMS, 2000, 112 (03) :511-520
[9]   Fuzzy linear programming based on statistical confidence interval and interval-valued fuzzy set [J].
Chiang, JS .
EUROPEAN JOURNAL OF OPERATIONAL RESEARCH, 2001, 129 (01) :65-86
[10]   Interval type-2 fuzzy membership function generation methods for pattern recognition [J].
Choi, Byung-In ;
Rhee, Frank Chung-Hoon .
INFORMATION SCIENCES, 2009, 179 (13) :2102-2122