Lysosome-mediated chemoresistance in acute myeloid leukemia

被引:6
作者
Cuesta-Casanovas, Laia [1 ,2 ]
Delgado-Martinez, Jennifer [1 ,3 ]
Cornet-Masana, Josep M. [1 ]
Carbo, Jose M. [4 ]
Clement-Demange, Lise [4 ]
Risueno, Ruth M. [1 ]
机构
[1] Josep Carreras Leukaemia Res Inst IJC, IJC Bldg,Campus ICO GTP,Ctra Can Ruti, Barcelona 08916, Spain
[2] Autonomous Univ Barcelona, Fac Biosci, Bellaterra 08193, Cerdanyola Del, Spain
[3] Univ Barcelona, Fac Pharm, Barcelona 08028, Spain
[4] Leukos Biotech, Muntaner 383, Barcelona 08036, Spain
关键词
Lysosome; chemoresistance; AML; lysosomotropic drug; lysosomal sequestration; refractory AML; CONFERS MULTIDRUG-RESISTANCE; GENE-EXPRESSION SIGNATURE; STEM-CELLS; DRUG-RESISTANCE; PHARMACOLOGICAL INHIBITION; SUBCELLULAR-DISTRIBUTION; GEMTUZUMAB OZOGAMICIN; THERAPEUTIC TARGET; VACUOLAR ATPASE; V-ATPASE;
D O I
10.20517/cdr.2021.122
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
Despite the outstanding advances in understanding the biology underlying the pathophysiology of acute myeloid leukemia (AML) and the promising preclinical data published lastly, AML treatment still relies on a classic chemotherapy regimen largely unchanged for the past five decades. Recently, new drugs have been approved for AML, but the real clinical benefit is still under evaluation. Nevertheless, primary refractory and relapse AML continue to represent the main clinical challenge, as the majority of AML patients will succumb to the disease despite achieving a complete remission during the induction phase. As such, treatments for chemoresistant AML represent an unmet need in this disease. Although great efforts have been made to decipher the biological basis for leukemogenesis, the mechanism by which AML cells become resistant to chemotherapy is largely unknown. The identification of the signaling pathways involved in resistance may lead to new combinatory therapies or new therapeutic approaches suitable for this subset of patients. Several mechanisms of chemoresistance have been identified, including drug transporters, key secondary messengers, and metabolic regulators. However, no therapeutic approach targeting chemoresistance has succeeded in clinical trials, especially due to broad secondary effects in healthy cells. Recent research has highlighted the importance of lysosomes in this phenomenon. Lysosomes' key role in resistance to chemotherapy includes the potential to sequester drugs, central metabolic signaling role, and gene expression regulation. These results provide further evidence to support the development of new therapeutic approaches that target lysosomes in AML.
引用
收藏
页码:233 / 244
页数:12
相关论文
共 107 条
[1]   Vacuolar ATPase as a possible therapeutic target in human acute myeloid leukemia [J].
Aasebo, Elise ;
Bartaula-Brevik, Sushma ;
Hernandez-Valladares, Maria ;
Bruserud, Oystein .
EXPERT REVIEW OF HEMATOLOGY, 2018, 11 (01) :13-24
[2]   Lysosomal cell death at a glance [J].
Aits, Sonja ;
Jaattela, Marja .
JOURNAL OF CELL SCIENCE, 2013, 126 (09) :1905-1912
[3]   What sustains the multidrug resistance phenotype beyond ABC efflux transporters? Looking beyond the tip of the iceberg [J].
Alexa-Stratulat, Teodora ;
Pesic, Milica ;
Gasparovic, Ana Cipak ;
Trougakos, Ioannis P. ;
Riganti, Chiara .
DRUG RESISTANCE UPDATES, 2019, 46
[4]   The lysosome: from waste bag to potential therapeutic target [J].
Appelqvist, Hanna ;
Waster, Petra ;
Kagedal, Katarina ;
Ollinger, Karin .
JOURNAL OF MOLECULAR CELL BIOLOGY, 2013, 5 (04) :214-226
[5]   Inherited myeloproliferative neoplasm risk affects haematopoietic stem cells [J].
Bao, Erik L. ;
Nandakumar, Satish K. ;
Liao, Xiaotian ;
Bick, Alexander G. ;
Karjalainen, Juha ;
Tabaka, Marcin ;
Gan, Olga, I ;
Havulinna, Aki S. ;
Kiiskinen, Tuomo T. J. ;
Lareau, Caleb A. ;
Portilla, Aitzkoa L. de Lapuente ;
Li, Bo ;
Emdin, Connor ;
Codd, Veryan ;
Nelson, Christopher P. ;
Walker, Christopher J. ;
Churchhouse, Claire ;
de la Chapelle, Albert ;
Klein, Daryl E. ;
Nilsson, Bjorn ;
Wilson, Peter W. F. ;
Cho, Kelly ;
Pyarajan, Saiju ;
Gaziano, J. Michael ;
Samani, Nilesh J. ;
Regev, Aviv ;
Palotie, Aarno ;
Neale, Benjamin M. ;
Dick, John E. ;
Natarajan, Pradeep ;
O'Donnell, Christopher J. ;
Daly, Mark J. ;
Milyavsky, Michael ;
Kathiresan, Sekar ;
Sankaran, Vijay G. .
NATURE, 2020, 586 (7831) :769-775
[6]   Sam68 Allows Selective Targeting of Human Cancer Stem Cells [J].
Benoit, Yannick D. ;
Mitchell, Ryan R. ;
Risueno, Ruth M. ;
Orlando, Luca ;
Tanasijevic, Borko ;
Boyd, Allison L. ;
Aslostovar, Lili ;
Salci, Kyle R. ;
Shapovalova, Zoya ;
Russell, Jennifer ;
Eguchi, Masakatsu ;
Golubeva, Diana ;
Graham, Monica ;
Xenocostas, Anargyros ;
Trus, Michael R. ;
Foley, Ronan ;
Leber, Brian ;
Collins, Tony J. ;
Bhatia, Mickie .
CELL CHEMICAL BIOLOGY, 2017, 24 (07) :833-+
[7]   Mitochondrial inhibitors circumvent adaptive resistance to venetoclax and cytarabine combination therapy in acute myeloid leukemia [J].
Bosc, Claudie ;
Saland, Estelle ;
Bousard, Aurelie ;
Gadaud, Noemie ;
Sabatier, Marie ;
Cognet, Guillaume ;
Farge, Thomas ;
Boet, Emeline ;
Gotanegre, Mathilde ;
Aroua, Nesrine ;
Mouchel, Pierre-Luc ;
Polley, Nathaniel ;
Larrue, Clement ;
Kaphan, Eleonore ;
Picard, Muriel ;
Sahal, Ambrine ;
Jarrou, Latifa ;
Tosolini, Marie ;
Rambow, Florian ;
Cabon, Florence ;
Nicot, Nathalie ;
Poillet-Perez, Laura ;
Wang, Yujue ;
Su, Xiaoyang ;
Fovez, Quentin ;
Kluza, Jerome ;
Arguello, Rafael Jose ;
Mazzotti, Celine ;
Avet-Loiseau, Herve ;
Vergez, Francois ;
Tamburini, Jerome ;
Fournie, Jean-Jacques ;
Tiong, Ing S. ;
Wei, Andrew H. ;
Kaoma, Tony ;
Marine, Jean-Christophe ;
Recher, Christian ;
Stuani, Lucille ;
Joffre, Carine ;
Sarry, Jean-Emmanuel .
NATURE CANCER, 2021, 2 (11) :1204-+
[8]  
BREUNINGER LM, 1995, CANCER RES, V55, P5342
[9]  
Bross PF, 2001, CLIN CANCER RES, V7, P1490
[10]   Targeting mTOR signaling pathways and related negative feedback loops for the treatment of acute myeloid leukemia [J].
Carneiro, Benedito A. ;
Kaplan, Jason B. ;
Altman, Jessica K. ;
Giles, Francis J. ;
Platanias, Leonidas C. .
CANCER BIOLOGY & THERAPY, 2015, 16 (05) :648-656