Automated Video Monitoring of Unmarked and Marked Honey Bees at the Hive Entrance

被引:9
作者
Rodriguez, Ivan F. [1 ,2 ]
Chan, Jeffrey [1 ,3 ]
Alvarez Rios, Manuel [3 ]
Branson, Kristin [4 ]
Agosto-Rivera, Jose L. [5 ]
Giray, Tugrul [5 ]
Megret, Remi [3 ]
机构
[1] Univ Puerto Rico, Dept Math, Rio Piedras Campus, San Juan, PR 00936 USA
[2] Brown Univ, Dept Cognit Linguist & Psychol Sci, Providence, RI 02912 USA
[3] Univ Puerto Rico, Dept Comp Sci, Rio Piedras Campus, San Juan, PR 00936 USA
[4] Howard Hughes Med Inst, Janelia Res Campus, Ashburn, VA USA
[5] Univ Puerto Rico, Dept Biol, Rio Piedras Campus, San Juan, PR 00936 USA
来源
FRONTIERS IN COMPUTER SCIENCE | 2022年 / 3卷
基金
美国国家科学基金会; 美国国家卫生研究院;
关键词
honey bee monitoring; bee counting; pollen detection; pose estimation; convolutional neural networks; SYSTEM;
D O I
10.3389/fcomp.2021.769338
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
We present a novel system for the automatic video monitoring of honey bee foraging activity at the hive entrance. This monitoring system is built upon convolutional neural networks that perform multiple animal pose estimation without the need for marking. This precise detection of honey bee body parts is a key element of the system to provide detection of entrance and exit events at the entrance of the hive including accurate pollen detection. A detailed evaluation of the quality of the detection and a study of the effect of the parameters are presented. The complete system also integrates identification of barcode marked bees, which enables the monitoring at both aggregate and individual levels. The results obtained on multiple days of video recordings show the applicability of the approach for large-scale deployment. This is an important step forward for the understanding of complex behaviors exhibited by honey bees and the automatic assessment of colony health.
引用
收藏
页数:15
相关论文
共 43 条
[1]   An emerging paradigm of colony health: microbial balance of the honey bee and hive (Apis mellifera) [J].
Anderson, K. E. ;
Sheehan, T. H. ;
Eckholm, B. J. ;
Mott, B. M. ;
DeGrandi-Hoffman, G. .
INSECTES SOCIAUX, 2011, 58 (04) :431-444
[2]   2D Human Pose Estimation: New Benchmark and State of the Art Analysis [J].
Andriluka, Mykhaylo ;
Pishchulin, Leonid ;
Gehler, Peter ;
Schiele, Bernt .
2014 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2014, :3686-3693
[3]  
[Anonymous], 2014, COMPUT RES REPOSITOR
[4]   POLLEN BEARING HONEY BEE DETECTION IN HIVE ENTRANCE VIDEO RECORDED BY REMOTE EMBEDDED SYSTEM FOR POLLINATION MONITORING [J].
Babic, Z. ;
Pilipovic, R. ;
Risojevic, V. ;
Mirjanic, G. .
XXIII ISPRS CONGRESS, COMMISSION VII, 2016, 3 (07) :51-57
[5]   PARALYSIS OF HONEY BEE APIS MELLIFERA LINNAEUS [J].
BAILEY, L .
JOURNAL OF INVERTEBRATE PATHOLOGY, 1965, 7 (02) :132-&
[6]   A computer vision system to monitor the infestation level of Varroa destructor in a honeybee colony [J].
Bjerge, Kim ;
Frigaard, Carsten Eie ;
Mikkelsen, Peter Hogh ;
Nielsen, Thomas Holm ;
Misbih, Michael ;
Kryger, Per .
COMPUTERS AND ELECTRONICS IN AGRICULTURE, 2019, 164
[7]   Tracking All Members of a Honey Bee Colony Over Their Lifetime Using Learned Models of Correspondence [J].
Boenisch, Franziska ;
Rosemann, Benjamin ;
Wild, Benjamin ;
Dormagen, David ;
Wario, Fernando ;
Landgraf, Tim .
FRONTIERS IN ROBOTICS AND AI, 2018, 5
[8]   Towards dense object tracking in a 2D honeybee hive [J].
Bozek, Katarzyna ;
Hebert, Laetitia ;
Mikheyev, Alexander S. ;
Stephens, Greg J. .
2018 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2018, :4185-4193
[9]  
Branson K, 2009, NAT METHODS, V6, P451, DOI [10.1038/nmeth.1328, 10.1038/NMETH.1328]
[10]  
Campbell J, 2008, WORKSH VIS OBS AN VE, P1