EFFECT OF THE PHASE CHANGE MATERIAL IN A SOLAR RECEIVER ON THERMAL PERFORMANCE OF PARABOLIC DISH COLLECTOR

被引:25
作者
Senthil, Ramalingam [1 ]
Cheralathan, Marimuthu [1 ]
机构
[1] SRM Univ, Dept Mech Engn, Madras, Tamil Nadu, India
来源
THERMAL SCIENCE | 2017年 / 21卷 / 06期
关键词
Scheffler parabolic dish; phase change material integrated receiver; exergy efficiency; STORAGE-SYSTEM; WATER-HEATER; EXERGY; ENERGY; PCM;
D O I
10.2298/TSCI150730007S
中图分类号
O414.1 [热力学];
学科分类号
摘要
In this work, the use of ease change material in the circular tank solar receiver is proposed for a 16 m(2) Scheffler parabolic dish solar concentrator to improve the heat transfer in the receiver. Magnesium chloride hexahydrate with melting temperature of 117 degrees C is selected as the phase change material in the annular space of the receiver with rectangular fins inside the phase change material. Experimental work is carried out to analyze heat transfer from the receiver to heat transfer fluid with and without phase change material in the inner periphery. Energy and exergy efficiency are determined from the measurements of solar radiation intensity, receiver temperature, surroundings temperature, heat transfer fluid inlet and outlet temperatures, storage tank temperature, and wind speed. The experiments were conducted in SRM University, Chennai, India (latitude: 13 5' N, longitude: 80 degrees 16' E) in April 2014. Use of phase change material in receiver periphery increased energy efficiency by 5.62%, exergy efficiency by 12.8% and decreased time to reach the boiling point of water by 20% when compared with the receiver without phase change material.
引用
收藏
页码:2803 / 2812
页数:10
相关论文
共 24 条
[1]   Experimentation with a water tank including a PCM module [J].
Cabeza, LF ;
Ibáñez, M ;
Solé, C ;
Roca, J ;
Nogués, M .
SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2006, 90 (09) :1273-1282
[2]   Natural convection heat transfer coefficients in phase change material (PCM) modules with external vertical fins [J].
Castell, Albert ;
Sole, Cristian ;
Medrano, Marc ;
Roca, Joan ;
Cabeza, Luisa F. ;
Garcia, Daniel .
APPLIED THERMAL ENGINEERING, 2008, 28 (13) :1676-1686
[3]  
Duffie J.A., 2006, SOLAR ENERGY THERMAL
[4]   One thousand thermal cycles of magnesium chloride hexahydrate as a promising PCM for indoor solar cooking [J].
El-Sebaii, A. A. ;
Al-Heniti, S. ;
Al-Agel, F. ;
Al-Ghamdi, A. A. ;
Al-Marzouki, F. .
ENERGY CONVERSION AND MANAGEMENT, 2011, 52 (04) :1771-1777
[5]   Investigation of a small scale double-reflector solar concentrating system with high temperature heat storage [J].
Foong, Chee Woh ;
Nydal, Ole Jorgen ;
Lovseth, Jorgen .
APPLIED THERMAL ENGINEERING, 2011, 31 (10) :1807-1815
[6]  
Forristal R., 2003, NREL/TP-550-34169
[7]  
Hottel H., 1942, Trans. ASME (Am. Soc. Mech. Eng.), V64, DOI DOI 10.1115/1.4018980
[8]   Exergy based performance evaluation of latent heat thermal storage system: A review [J].
Jegadheeswaran, S. ;
Pohekar, S. D. ;
Kousksou, T. .
RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2010, 14 (09) :2580-2595
[9]  
Karimi S. O., 2014, THERMAL SCI S2, V18, pS323
[10]  
Kaushik S. C., 2008, Energy for Sustainable Development, V12, P60, DOI [10.1016/S0973-0826(08)60440-8, DOI 10.1016/S0973-0826(08)60440-8]