New class of generating functions associated with generalized hypergeometric polynomials

被引:1
作者
Pathan, MA [1 ]
Khan, NU
Qureshi, MI
机构
[1] Aligarh Muslim Univ, Dept Math, Aligarh 202002, Uttar Pradesh, India
[2] Jamia Millia Islamia, Fac Engn & Technol, Dept Appl Sci & Humanities, New Delhi 110025, India
关键词
multiple Gaussian hypergeometric functions; pochhammer symbol; bounded multiple sequence; generating function; hypergeometric polynomials;
D O I
10.1016/S0022-247X(03)00453-0
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper authors prove a general theorem on generating relations for a certain sequence of functions. Many formulas involving the families of generating functions for generalized hypergeometric polynomials are shown here to be special cases of a general class of generating functions involving generalized hypergeometric polynomials and multiple hypergeometric series of several variables. It is then shown how the main result can be applied to derive a large number of generating functions involving hypergeometric functions of Kampe de Feriet, Srivastava, Srivastava-Daoust, Chaundy, Fasenmyer, Cohen, Pasternack, Khandekar, Rainville and other multiple Gaussian hypergeometric polynomials scattered in the literature of special functions. (C) 2003 Elsevier Inc. All rights reserved.
引用
收藏
页码:642 / 650
页数:9
相关论文
共 14 条
[1]  
[Anonymous], TREATISE GENERATING
[2]  
Chaundy T. W., 1943, Quart. J. Math. Oxford Ser., V14, P55
[3]   A NEW CLASS OF POLYNOMIALS RELEVANT TO ELECTRON COLLISION PROBLEMS [J].
COHEN, ME .
MATHEMATISCHE ZEITSCHRIFT, 1969, 108 (02) :121-&
[4]   SOME GENERALIZED HYPERGEOMETRIC POLYNOMIALS [J].
FASENMYER, MC .
BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1947, 53 (08) :806-812
[5]  
KHANDEKAR PR, 1964, P NATL A SCI INDIA A, V34, P157
[6]  
Pasternack S, 1939, PHILOS MAG, V28, P209
[7]  
Pathan M. A., 1979, NEDERL WETENSCH P A, V41, P171
[8]  
Pathan M. A., 1979, J NAT CHIAO TUNG U, V6, P51
[9]  
Rainville E., 1960, Special Functions
[10]  
Srivastava H. M., 1985, MULTIPLE GAUSSIAN HY