Lung Microbiota Predict Clinical Outcomes in Critically Ill Patients

被引:248
作者
Dickson, Robert P. [1 ,2 ,5 ]
Schultz, Marcus J. [6 ,9 ,10 ]
van der Poll, Tom [7 ]
Schouten, Laura R. [6 ,9 ]
Falkowski, Nicole R. [1 ]
Luth, Jenna E. [1 ]
Sjoding, Michael W. [1 ,3 ,5 ]
Brown, Christopher A. [1 ]
Chanderraj, Rishi [1 ,4 ]
Huffnagle, Gary B. [1 ,2 ]
Bos, Lieuwe D. J. [6 ,8 ,9 ]
机构
[1] Univ Michigan, Med Sch, Div Pulm & Crit Care Med, Dept Internal Med, Ann Arbor, MI 48109 USA
[2] Univ Michigan, Med Sch, Dept Microbiol & Immunol, Ann Arbor, MI 48109 USA
[3] Univ Michigan, Med Sch, Ctr Computat Med & Bioinformat, Ann Arbor, MI 48109 USA
[4] Univ Michigan, Med Sch, Div Infect Dis, Dept Internal Med, Ann Arbor, MI 48109 USA
[5] Michigan Ctr Integrat Res Crit Care, Ann Arbor, MI USA
[6] Amsterdam Univ Med Ctr, Intens Care, Amsterdam, Netherlands
[7] Amsterdam Univ Med Ctr, Ctr Expt & Mol Med, Amsterdam, Netherlands
[8] Amsterdam Univ Med Ctr, Dept Resp Med, Amsterdam, Netherlands
[9] Univ Amsterdam, Infect & Immun, Amsterdam, Netherlands
[10] Mahidol Univ, Mahidol Oxford Trop Med Res Unit, Bangkok, Thailand
关键词
lung microbiome; acute respiratory distress syndrome; lung injury; prognosis; RESPIRATORY-DISTRESS-SYNDROME; INTENSIVE-CARE-UNIT; PNEUMONIA; EXACERBATIONS; INFECTIONS; MORTALITY; CLUSTER; SEPSIS; SCORE;
D O I
10.1164/rccm.201907-1487OC
中图分类号
R4 [临床医学];
学科分类号
1002 ; 100602 ;
摘要
Rationale: Recent studies have revealed that, in critically ill patients, lung microbiota are altered and correlate with alveolar inflammation. The clinical significance of altered lung bacteria in critical illness is unknown. Objectives: To determine if clinical outcomes of critically ill patients are predicted by features of the lung microbiome at the time of admission. Methods: We performed a prospective, observational cohort study in an ICU at a university hospital. Lung microbiota were quantified and characterized using droplet digital PCR and bacterial 16S ribosomal RNA gene quantification and sequencing. Primary predictors were the bacterial burden, community diversity, and community composition of lung microbiota. The primary outcome was ventilator-free days, determined at 28 days after admission. Measurements and Main Results: Lungs of 91 critically ill patients were sampled using miniature BAL within 24 hours of ICU admission. Patients with increased lung bacterial burden had fewer ventilator-free days (hazard ratio, 0.43; 95% confidence interval, 0.21-0.88), which remained significant when the analysis was controlled for pneumonia and severity of illness. The community composition of lung bacteria predicted ventilator-free days (P = 0.003), driven by the presence of gut-associated bacteria (e.g., species of the Lachnospiraceae and Enterobacteriaceae families). Detection of gut-associated bacteria was also associated with the presence of acute respiratory distress syndrome. Conclusions: Key features of the lung microbiome (bacterial burden and enrichment with gut-associated bacteria) predict outcomes in critically ill patients. The lung microbiome is an understudied source of clinical variation in critical illness and represents a novel therapeutic target for the prevention and treatment of acute respiratory failure.
引用
收藏
页码:555 / 563
页数:9
相关论文
共 38 条
[1]  
[Anonymous], 2015, MISEQ SOP
[2]  
[Anonymous], 2012, R PACKAGE VERSION 2
[3]   Identification and validation of distinct biological phenotypes in patients with acute respiratory distress syndrome by cluster analysis [J].
Bos, L. D. ;
Schouten, L. R. ;
van Vught, L. A. ;
Wiewel, M. A. ;
Ong, D. S. Y. ;
Cremer, O. ;
Artigas, A. ;
Martin-Loeches, I. ;
Hoogendijk, A. J. ;
van der Poll, T. ;
Horn, J. ;
Juffermans, N. ;
Calfee, C. S. ;
Schultz, M. J. .
THORAX, 2017, 72 (10) :876-883
[4]   Maturation of the Infant Respiratory Microbiota, Environmental Drivers, and Health Consequences [J].
Bosch, Astrid A. T. M. ;
Piters, Wouter A. A. de Steenhuijsen ;
van Houten, Marlies A. ;
Chu, Mei Ling J. N. ;
Biesbroek, Giske ;
Kool, Jolanda ;
Pernet, Paula ;
de Groot, Pieter-Kees C. M. ;
Eijkemans, Marinus J. C. ;
Keijser, Bart J. F. ;
Sanders, Elisabeth A. M. ;
Bogaert, Debby .
AMERICAN JOURNAL OF RESPIRATORY AND CRITICAL CARE MEDICINE, 2017, 196 (12) :1582-1590
[5]   Random forests [J].
Breiman, L .
MACHINE LEARNING, 2001, 45 (01) :5-32
[6]   Global patterns of 16S rRNA diversity at a depth of millions of sequences per sample [J].
Caporaso, J. Gregory ;
Lauber, Christian L. ;
Walters, William A. ;
Berg-Lyons, Donna ;
Lozupone, Catherine A. ;
Turnbaugh, Peter J. ;
Fierer, Noah ;
Knight, Rob .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2011, 108 :4516-4522
[7]   The Lung Microbiota of Healthy Mice Are Highly Variable, Cluster by Environment, and Reflect Variation in Baseline Lung Innate Immunity [J].
Dickson, Robert P. ;
Erb-Downward, John R. ;
Falkowski, Nicole R. ;
Hunter, Ellen M. ;
Ashley, Shanna L. ;
Huffnagle, Gary B. .
AMERICAN JOURNAL OF RESPIRATORY AND CRITICAL CARE MEDICINE, 2018, 198 (04) :497-508
[8]   Bacterial Topography of the Healthy Human Lower Respiratory Tract [J].
Dickson, Robert P. ;
Erb-Downward, John R. ;
Freeman, Christine M. ;
McCloskey, Lisa ;
Falkowski, Nicole R. ;
Huffnagle, Gary B. ;
Curtis, Jeffrey L. .
MBIO, 2017, 8 (01)
[9]  
Dickson RP, 2016, NAT MICROBIOL, V1, DOI [10.1038/NMICROBIOL.2016.113, 10.1038/nmicrobiol.2016.113]
[10]   The Microbiome and the Respiratory Tract [J].
Dickson, Robert P. ;
Erb-Downward, John R. ;
Martinez, Fernando J. ;
Huffnagle, Gary B. .
ANNUAL REVIEW OF PHYSIOLOGY, VOL 78, 2016, 78 :481-504