Hyperbolic Kac-Moody superalgebras

被引:2
作者
Frappat, L
Sciarrino, A
机构
[1] Univ Savoie, CNRS, UMR 5108, Lab Annecy Le Vieux Phys Theor, F-74941 Annecy Le Vieux, France
[2] Univ Naples Federico II, Dipartimento Sci Fisiche, I-80126 Naples, Italy
[3] Ist Nazl Fis Nucl, Sez Napoli, I-80126 Naples, Italy
关键词
D O I
10.1063/1.1851605
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We present a classification of the hyperbolic Kac-Moody (HKM) superalgebras. The HKM superalgebras of rank r >= 3 are finite in number (213) and limited in rank (6). The Dynkin-Kac diagrams and the corresponding simple root systems are determined. We also discuss a class of singular sub(super)algebras obtained by a folding procedure. (C) 2005 American Institute of Physics.
引用
收藏
页数:32
相关论文
共 18 条
[1]   Cosmological billiards [J].
Damour, T ;
Henneaux, M ;
Nicolai, H .
CLASSICAL AND QUANTUM GRAVITY, 2003, 20 (09) :R145-R200
[2]  
Frappat L., 2000, Dictionary on Lie Algebras and Superalgebras
[3]   Multistring vertices and hyperbolic Kac-Moody algebras [J].
Gebert, RW ;
Nicolai, H ;
West, PC .
INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 1996, 11 (03) :429-514
[4]  
GROZMAN P, HEPTH9702073
[5]   Algebras, BPS states, and strings [J].
Harvey, JA ;
Moore, G .
NUCLEAR PHYSICS B, 1996, 463 (2-3) :315-368
[6]  
Kac V. G., 1994, INFINITE DIMENSIONAL
[7]  
Kac V. G., 1968, Math. USSR Izv., V2, P1271, DOI 10.1070/IM1968v002n06ABEH000729
[8]   LIE SUPER-ALGEBRAS [J].
KAC, VG .
ADVANCES IN MATHEMATICS, 1977, 26 (01) :8-96
[10]  
Kleinschmidt A, 2004, J HIGH ENERGY PHYS, DOI 10.1088/1126-6708/2004/07/041