Preparation of radial and longitudinal nanosized heterostructures of In2O3 and SnO2

被引:49
作者
Vomiero, A. [1 ,2 ]
Ferroni, M. [1 ,2 ]
Comini, E. [1 ,2 ]
Faglia, G. [1 ,2 ]
Sberveglieri, G. [1 ,2 ]
机构
[1] INFM CNR Sensor Lab, I-25133 Brescia, Italy
[2] Univ Brescia, Dept Chem & Phys Engn & Mat, I-25133 Brescia, Italy
关键词
D O I
10.1021/nl071339n
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Radial and longitudinal nanosized In2O3-SnO2 heterostructures were produced by applying a suitable methodology of transport and condensation. Sequential evaporation-condensation over In-seeded alumina promotes the formation of a radial heterostructure, driven by the direct vapor-solid growth mechanism. The single-crystalline In2O3 nanowire nucleates and acts as the backbone for condensation of a polycrystalline SnO2 sheath. Fabrication of longitudinal heterostructures over sapphire is achieved through the application of a nanosized gold catalyst: the gold particles promote nucleation according to the vapor-liquid-solid mechanism, and lead to the formation of single-crystalline In2O3 nanowires with a gold droplet at the apex. Gold maintains its catalytic activity even during subsequent evaporation of SnO2.and induces the nucleation of a SnO2 single-crystal nanowire from the termination of an In2O3 nanowire. The electrical characterization of the longitudinally assembled In2O3-SnO2 structure highlighted a peculiar behavior, as the heterojunction of two n-type semiconducting oxides was revealed, tin oxide being reversely biased. These results hold great potential for the application of precisely shaped heterojunctions.
引用
收藏
页码:3553 / 3558
页数:6
相关论文
共 42 条
[1]   One-dimensional steeplechase for electrons realized [J].
Björk, MT ;
Ohlsson, BJ ;
Sass, T ;
Persson, AI ;
Thelander, C ;
Magnusson, MH ;
Deppert, K ;
Wallenberg, LR ;
Samuelson, L .
NANO LETTERS, 2002, 2 (02) :87-89
[2]   THE GROWTH OF CRYSTALS AND THE EQUILIBRIUM STRUCTURE OF THEIR SURFACES [J].
BURTON, WK ;
CABRERA, N ;
FRANK, FC .
PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY OF LONDON SERIES A-MATHEMATICAL AND PHYSICAL SCIENCES, 1951, 243 (866) :299-358
[3]   Nucleation and growth of SnO2 nanowires [J].
Calestani, D. ;
Zha, M. ;
Salviati, G. ;
Lazzarini, L. ;
Zanotti, L. ;
Comini, E. ;
Sberveglieri, G. .
JOURNAL OF CRYSTAL GROWTH, 2005, 275 (1-2) :E2083-E2087
[4]  
Cao G., 2004, Nanostructures nanomaterials: synthesis, properties applications
[5]   Functional nanoscale electronic devices assembled using silicon nanowire building blocks [J].
Cui, Y ;
Lieber, CM .
SCIENCE, 2001, 291 (5505) :851-853
[6]   Preparation and characterization of MgO nanorods [J].
Cui, Z ;
Meng, GW ;
Huang, WD ;
Wang, GZ ;
Zhang, LD .
MATERIALS RESEARCH BULLETIN, 2000, 35 (10) :1653-1659
[7]   Indium phosphide nanowires as building blocks for nanoscale electronic and optoelectronic devices [J].
Duan, XF ;
Huang, Y ;
Cui, Y ;
Wang, JF ;
Lieber, CM .
NATURE, 2001, 409 (6816) :66-69
[8]   Semiconductor nanowires: From self-organization to patterned growth [J].
Fan, HJ ;
Werner, P ;
Zacharias, M .
SMALL, 2006, 2 (06) :700-717
[9]   Growth of nanowire superlattice structures for nanoscale photonics and electronics [J].
Gudiksen, MS ;
Lauhon, LJ ;
Wang, J ;
Smith, DC ;
Lieber, CM .
NATURE, 2002, 415 (6872) :617-620
[10]  
He JH, 2006, SMALL, V2, P116, DOI 10.1002/smll.200500210