The Development of New Perovskite-Type Oxygen Transport Membranes Using Machine Learning

被引:7
作者
Schlenz, Hartmut [1 ,2 ,3 ]
Baumann, Stefan [1 ,3 ]
Meulenberg, Wilhelm Albert [1 ,3 ,4 ]
Guillon, Olivier [1 ,3 ,5 ]
机构
[1] Forschungszentrum Juelich, IEK 1 Mat Synth & Proc, Inst Energy & Climate Res IEK, Wilhelm Johnen Str, D-52425 Julich, Germany
[2] Univ Bonn, Inst Geosci, Div Geochem & Petrol, Meckenheimer Allee 139, D-53115 Bonn, Germany
[3] Juelich Aachen Res Alliance JARA Energy, D-52425 Julich, Germany
[4] Univ Twente, Fac Sci & Technol, Inorgan Membranes, POB 217, NL-7500 AE Enschede, Netherlands
[5] Rhein Westfal TH Aachen, Inst Mineral Engn, Dept Ceram & Refractory Mat, D-52064 Aachen, Germany
关键词
ceramic; perovskite; oxygen separation membrane; mixed ionic-electronic conducting membrane MIEC; valence bond calculations; machine learning; !text type='python']python[!/text] programming; Pecon; py; BOND-VALENCE PARAMETERS; ELECTRICAL-CONDUCTIVITY; SOLID ELECTROLYTES; IONIC-CONDUCTIVITY; FUEL-CELL; SRTIO3; PREDICTION; OXIDES; STABILITY; VACANCIES;
D O I
10.3390/cryst12070947
中图分类号
O7 [晶体学];
学科分类号
0702 ; 070205 ; 0703 ; 080501 ;
摘要
The aim of this work is to predict suitable chemical compositions for the development of new ceramic oxygen gas separation membranes, avoiding doping with toxic cobalt or expensive rare earths. For this purpose, we have chosen the system Sr<INF>1-x</INF>Ba<INF>x</INF>(Ti<INF>1-y-z</INF>V<INF>y</INF>Fe<INF>z</INF>)O<INF>3-delta</INF> (cubic perovskite-type phases). We have evaluated available experimental data, determined missing crystallographic information using bond-valence modeling and programmed a Python code to be able to generate training data sets for property predictions using machine learning. Indeed, suitable compositions of cubic perovskite-type phases can be predicted in this way, allowing for larger electronic conductivities of up to sigma<INF>e</INF> = 1.6 S/cm and oxygen conductivities of up to sigma<INF>i</INF> = 0.008 S/cm at T = 1173 K and an oxygen partial pressure p<INF>O<INF>2</INF></INF> = 10-15 bar, thus enabling practical applications.
引用
收藏
页数:17
相关论文
共 78 条
  • [71] Two semi-empirical approaches for the prediction of oxide ionic conductivities in ABO3 perovskites
    Xu, Liu
    Wencong, Lu
    Chunrong, Peng
    Qiang, Su
    Jin, Guo
    [J]. COMPUTATIONAL MATERIALS SCIENCE, 2009, 46 (04) : 860 - 868
  • [72] Rationalizing Perovskite Data for Machine Learning and Materials Design
    Xu, Qichen
    Li, Zhenzhu
    Liu, Miao
    Yin, Wan-Jian
    [J]. JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2018, 9 (24): : 6948 - 6954
  • [73] Systematic Study of Descriptors for Oxygen Evolution Reaction Catalysis in Perovskite Oxides
    Yamada, Ikuya
    Takamatsu, Akihiko
    Asai, Kaisei
    Shirakawa, Takuto
    Ohzuku, Hideo
    Seno, Akihiro
    Uchimura, Tasuku
    Fujii, Hiroshi
    Kawaguchi, Shogo
    Wada, Kouhei
    Ikeno, Hidekazu
    Yagi, Shunsuke
    [J]. JOURNAL OF PHYSICAL CHEMISTRY C, 2018, 122 (49) : 27885 - 27892
  • [74] Complementary evaluation of structure stability of perovskite oxides using bond-valence and density-functional-theory calculations
    Yamada, Ikuya
    Takamatsu, Akihiko
    Ikeno, Hidekazu
    [J]. SCIENCE AND TECHNOLOGY OF ADVANCED MATERIALS, 2018, 19 (01) : 101 - 107
  • [75] Electrical conductivity, thermal expansion and stability of Y- and Al-substituted SrVO3 as prospective SOFC anode material
    Yaremchenko, A. A.
    Brinkmann, B.
    Janssen, R.
    Frade, J. R.
    [J]. SOLID STATE IONICS, 2013, 247 : 86 - 93
  • [76] Yasser EM, 2005, WLSVM
  • [77] A Database of Ionic Transport Characteristics for Over 29 000 Inorganic Compounds
    Zhang, Liwen
    He, Bing
    Zhao, Qian
    Zou, Zheyi
    Chi, Shuting
    Mi, Penghui
    Ye, Anjiang
    Li, Yajie
    Wang, Da
    Avdeev, Maxim
    Adams, Stefan
    Shi, Siqi
    [J]. ADVANCED FUNCTIONAL MATERIALS, 2020, 30 (35)
  • [78] Zhu XF, 2017, GREEN CHEM SUSTAIN T, P179, DOI 10.1007/978-3-662-53534-9_6