HARDNESS OF DUCTILE CAST IRON ESTIMATED BY ARTIFICIAL NEURAL NETWORKS

被引:0
作者
Zmak, Irena
Filetin, Tomislav
Hren, Smiljan
机构
来源
ANNALS OF DAAAM FOR 2009 & PROCEEDINGS OF THE 20TH INTERNATIONAL DAAAM SYMPOSIUM | 2009年 / 20卷
关键词
ductile cast iron; hardness; artificial neural networks; modelling; PREDICTION;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The paper gives the results of application of artificial neural networks in determining hardness of ductile cast iron. Data for 147 melts were collected in a Croatian foundry. The error back-propagation algorithm was used to train the multilayer feed-forward network. The optimal size of the hidden neuron layer was selected by analysing error parameters in the testing data set. There were 8 input parameters: liquidus temperature, lowest eutectic temperature, the recalescence, solidus, graphite factor 1, graphite factor 2, cooling rate at solidus, and eutectoid temperature. A statistical analysis of errors in estimating hardness of ductile cast iron was made.
引用
收藏
页码:1401 / 1402
页数:2
相关论文
共 9 条
[1]  
[Anonymous], 2007, Modern Casting, P22
[2]  
EKPOOM U, 1981, AFS T, V89, P27
[3]  
Frost JM., 1992, AFS T, V100, P189
[4]  
Gagne M., 2004, SORELMETAL BOOK DUCT
[5]  
Glavas Z, 2007, KOVOVE MATER, V45, P41
[6]  
Labrecque C, 1998, TRAN AMER F, V106, P83
[7]   Prediction of ductile cast iron quality by artificial neural networks [J].
Perzyk, M ;
Kochanski, AW .
JOURNAL OF MATERIALS PROCESSING TECHNOLOGY, 2001, 109 (03) :305-307
[8]  
Voracek J., 2001, Applied Soft Computing, V1, P119, DOI 10.1016/S1568-4946(01)00012-6
[9]  
ZMAK I, 2009, P 3 INT C MOD SIM AP, P1