Low-Frequency Noise Spectroscopy Characterization of HgCdTe Infrared Detectors

被引:19
作者
Zhu, Liqi [1 ,2 ,3 ]
Huang, Jian [4 ]
Xie, Zongheng [4 ]
Deng, Zhuo [4 ]
Chen, Lu [2 ]
Lin, Chun [2 ]
Chen, Baile [4 ]
机构
[1] ShanghaiTech Univ, Sch Informat Sci & Technol, Shanghai 201210, Peoples R China
[2] Chinese Acad Sci, Shanghai Inst Tech Phys, Key Lab Infrared Imaging Mat & Detectors, Shanghai 200083, Peoples R China
[3] Univ Chinese Acad Sci, Beijing 100049, Peoples R China
[4] ShanghaiTech Univ, Optoelect Device Lab, Sch Informat Sci & Technol, Shanghai 201210, Peoples R China
关键词
Activation energy; defect analysis; HgCdTe detectors; low-frequency noise spectroscopy (LFNS); resonant state; CARRIER LIFETIME; TRENDS;
D O I
10.1109/TED.2019.2960281
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Low-frequency noise spectroscopy (LFNS) is an effective tool to study the trap properties in infrared photodetectors which may cause the limitations of dark current, dark noise, and quantum efficiency as well. In this article, the trap levels of HgCdTe infrared detectors with different Cd compositions are investigated with LFNS. The defect levels within the bandgap have been identified. In addition, trap states with activation energy above the material bandgap are also found for Hg-vacancy doped mid-wavelength and long-wavelength infrared HgCdTe photodetectors due to the resonant states located above the conduction band edge. The method to eliminate these resonant states is also investigated.
引用
收藏
页码:547 / 551
页数:5
相关论文
共 34 条
[21]   Third-generation sensors for night vision [J].
Norton, P .
OPTO-ELECTRONICS REVIEW, 2006, 14 (01) :1-10
[22]   Surface leakage current in 12.5 μm long-wavelength HgCdTe infrared photodiode arrays [J].
Qiu, Weicheng ;
Hu, Weida ;
Lin, Chun ;
Chen, Xiaoshuang ;
Lu, Wei .
OPTICS LETTERS, 2016, 41 (04) :828-831
[23]   Low-frequency noise in mid-wavelength infrared InAs/GaSb type-II superlattice based focal plane arrays [J].
Razeghi, M. ;
Haddadi, A. ;
Chen, G. ;
Hoang, A. M. ;
Chevallier, R. ;
Callewaert, F. .
INFRARED TECHNOLOGY AND APPLICATIONS XL, 2014, 9070
[24]   New material systems for third generation infrared photodetectors [J].
Rogalski, A. .
OPTO-ELECTRONICS REVIEW, 2008, 16 (04) :458-482
[25]   HgCdTe infrared detector material: history, status and outlook [J].
Rogalski, A .
REPORTS ON PROGRESS IN PHYSICS, 2005, 68 (10) :2267-2336
[26]   Type-II superlattice photodetectors versus HgCdTe photodiodes [J].
Rogalski, A. ;
Martyniuk, P. ;
Kopytko, M. .
PROGRESS IN QUANTUM ELECTRONICS, 2019, 68
[27]   Challenges of small-pixel infrared detectors: a review [J].
Rogalski, A. ;
Martyniuk, P. ;
Kopytko, M. .
REPORTS ON PROGRESS IN PHYSICS, 2016, 79 (04)
[28]   Recent progress in infrared detector technologies [J].
Rogalski, A. .
INFRARED PHYSICS & TECHNOLOGY, 2011, 54 (03) :136-154
[29]   Third-generation infrared photodetector arrays [J].
Rogalski, A. ;
Antoszewski, J. ;
Faraone, L. .
JOURNAL OF APPLIED PHYSICS, 2009, 105 (09)
[30]   High Operating Temperature MWIR detectors [J].
Schaake, H. F. ;
Kinch, M. A. ;
Chandra, D. ;
Liao, P. K. ;
Weirauch, D. F. ;
Wan, C. -F. ;
Shih, H. D. .
QUANTUM SENSING AND NANOPHOTONIC DEVICES VII, 2010, 7608