On the stationary solutions of generalized reaction diffusion equations with p&q-Laplacian

被引:303
作者
Cherfils, L [1 ]
Il'Yasov, Y
机构
[1] Univ De La Rochelle, Lab Math & Applicat, F-17042 La Rochelle, France
[2] Bashkir State Univ, Ufa, Russia
关键词
p&q-Laplacian; variational principles; existence of non-negative solution;
D O I
10.3934/cpaa.2005.4.9
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we analyse a family of stationary nonlinear equations with p&q- Laplacian -Delta(p)u - Delta(q)u = lambda c(x, u) which have a wide spectrum of applications in many areas of science. We introduce a new type of variational principles corresponding to this family of equations. Using this formalism, we exhibit intervals for the scalar parameter lambda where there exist positive solutions of the considered problems. Furthermore, we prove, in another interval, the nonexistence of nontrivial solutions. These results are different from those of existence and nonexistence for stationary equations with single Laplacian.
引用
收藏
页码:9 / 22
页数:14
相关论文
共 16 条
[1]  
Ambrosetti A., 1973, Journal of Functional Analysis, V14, P349, DOI 10.1016/0022-1236(73)90051-7
[2]  
[Anonymous], 1996, VARIATIONAL METHODS, DOI DOI 10.1007/978-3-662-03212-1
[3]  
Aris R., 1979, RES NOTES MATH, V24
[4]   Soliton like solutions of a Lorentz invariant equation in dimension 3 [J].
Benci, V ;
Fortunato, D ;
Pisani, L .
REVIEWS IN MATHEMATICAL PHYSICS, 1998, 10 (03) :315-344
[5]   Solitons in several space dimensions: Derrick's problem and infinitely many solutions [J].
Benci, V ;
D'Avenia, P ;
Fortunato, D ;
Pisani, L .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2000, 154 (04) :297-324
[6]   An eigenvalue problem for a quasilinear elliptic field equation [J].
Benci, V ;
Micheletti, AM ;
Visetti, D .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2002, 184 (02) :299-320
[7]  
Berestycki H., 1995, Nonlinear Differ Equ Appl, V2, P553, DOI [DOI 10.1007/BF01210623, 10.1007/BF01210623]
[8]   COMMENTS ON NONLINEAR WAVE EQUATIONS AS MODELS FOR ELEMENTARY PARTICLES [J].
DERRICK, GH .
JOURNAL OF MATHEMATICAL PHYSICS, 1964, 5 (09) :1252-&
[9]  
DETHELIN F, 1978, CR ACAD SCI A MATH, V286, P443
[10]  
Dinca G., 2001, PORT MATH, V58, P339