Wavelet Sets and Scaling Sets in Local Fields

被引:3
|
作者
Behera, Biswaranjan [1 ]
机构
[1] Stat & Math Unit, 203 BT Rd, Kolkata 700108, India
关键词
Local field; Wavelet set; Scaling set; Generalized scaling set; MSF wavelet; MRA-wavelet; Translation congruence; Dilation congruence; MULTIRESOLUTION ANALYSIS; DIMENSION FUNCTIONS; CONSTRUCTION; DILATIONS; MRAS;
D O I
10.1007/s00041-021-09887-2
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We provide characterizations of minimally supported frequency multiwavelets, multiwavelet sets, generalized scaling sets, and scaling sets in a local field of positive characteristic. We also construct examples of multiwavelet sets and wavelet sets. In particular, we construct examples of unbounded wavelet sets and show that the corresponding wavelets are not associated with multiresolution analyses.
引用
收藏
页数:23
相关论文
共 50 条
  • [1] Wavelet Sets and Scaling Sets in Local Fields
    Biswaranjan Behera
    Journal of Fourier Analysis and Applications, 2021, 27
  • [2] Wavelet sets, scaling sets and generalized scaling sets on Vilenkin group
    Mahapatra, Prasadini
    Singh, Divya
    Swain, Arpit Chandan
    ASIAN-EUROPEAN JOURNAL OF MATHEMATICS, 2023, 16 (12)
  • [3] Frame scaling function sets and frame wavelet sets in Rd
    Liu, Zhanwei
    Hu, Guoen
    Wu, Guochang
    CHAOS SOLITONS & FRACTALS, 2009, 40 (05) : 2483 - 2490
  • [4] Jump sets in local fields
    Pagano, C.
    JOURNAL OF ALGEBRA, 2022, 593 : 398 - 476
  • [5] Dimension functions, scaling sequences, and wavelet sets
    Arambasic, Ljiljana
    Bakic, Damir
    Rajic, Rajna
    STUDIA MATHEMATICA, 2010, 198 (01) : 1 - 32
  • [6] Gabor fields and wavelet sets for the Heisenberg group
    Bradley Currey
    Azita Mayeli
    Monatshefte für Mathematik, 2011, 162 : 119 - 142
  • [7] Gabor fields and wavelet sets for the Heisenberg group
    Currey, Bradley
    Mayeli, Azita
    MONATSHEFTE FUR MATHEMATIK, 2011, 162 (02): : 119 - 142
  • [8] Convergence Sets of Multidimensional Local Fields
    Madunts A.I.
    Journal of Mathematical Sciences, 2022, 264 (1) : 80 - 85
  • [9] Framelet Sets and Associated Scaling Sets
    Zhang, Zhihua
    MATHEMATICS, 2021, 9 (21)
  • [10] On wavelet sets
    Ionascu, EJ
    Larson, DR
    Pearcy, CM
    JOURNAL OF FOURIER ANALYSIS AND APPLICATIONS, 1998, 4 (06) : 711 - 721