Variable amplitude fatigue life in VHCF and probabilistic life predictions

被引:13
作者
Arcari, Attilio [1 ]
Apetre, Nicole [1 ]
Dowling, Norman [2 ,3 ]
Meischel, Martin [4 ]
Stanzl-Tschegg, Stefanie [4 ]
Iyyer, Nagaraja [1 ]
Phan, Nam [5 ]
机构
[1] Tech Data Anal Inc, 3190 Fairview Pk Dr,Suite 650, Falls Church, VA 22042 USA
[2] Virginia Polytech Inst & State Univ, Mat Sci & Engn Dept, Blacksburg, VA 24061 USA
[3] Virginia Polytech Inst & State Univ, Engn Sci & Mech Dept, Blacksburg, VA 24061 USA
[4] Univ Nat Resources & Life Sci, BOKU, Vienna, Austria
[5] US Naval Air Syst Command, Patuxent River, MD 20670 USA
来源
ICSI 2015 THE 1ST INTERNATIONAL CONFERENCE ON STRUCTURAL INTEGRITY FUNCHAL | 2015年 / 114卷
关键词
Very High Cycle Fatigue; Variable Amplitude Loading; Mean Stress Effects; Walker Equation; Weibull Regression;
D O I
10.1016/j.proeng.2015.08.107
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Fatigue life in the very high cycle fatigue (VHCF) regime for aluminum alloy 7075-T6 in plate form is characterized in constant and variable amplitude loading using unique testing equipment that allows superposition of small amplitude vibrations on top of duty cycles [1]. Constant amplitude loading data from the current experimental effort and from literature sources are used to construct a strain-life input using a Walker mean stress correction method. Variable amplitude loading data are analyzed using the constructed strain-life input. A novel probabilistic approach based on the probabilistic framework of Castillo [2] and modified by using the proposed mean stress correction method is applied. Results are compared with experimentally obtained fatigue lives. Insights into modes of failure in very high cycle fatigue for constant and variable amplitude loading, the role of experimental scatter and interaction effects are presented. (C) 2015 Published by Elsevier Ltd.
引用
收藏
页码:574 / 582
页数:9
相关论文
共 16 条
[1]  
[Anonymous], 53 AIAA ASME ASCE AH
[2]  
Apetre N., 2015, P ENG MAY
[3]  
Barter S. A., 2002, FATIGUE FRACTURE ENG, V25-2
[4]  
BATHIAS C, 2001, INT J FATIGUE, V23
[5]   A geometric approach to modeling microstructurally small fatigue crack formation: I. Probabilistic simulation of constituent particle cracking in AA 7075-T651 [J].
Bozek, J. E. ;
Hochhalter, J. D. ;
Veilleux, M. G. ;
Liu, M. ;
Heber, G. ;
Sintay, S. D. ;
Rollett, A. D. ;
Littlewood, D. J. ;
Maniatty, A. M. ;
Weiland, H. ;
Christ, R. J., Jr. ;
Payne, J. ;
Welsh, G. ;
Harlow, D. G. ;
Wawrzynek, P. A. ;
Ingraffea, A. R. .
MODELLING AND SIMULATION IN MATERIALS SCIENCE AND ENGINEERING, 2008, 16 (06)
[6]  
Castillo E., 2009, UNIFIED STAT METHODO
[7]   Mean stress effects in stress-life fatigue and the Walker equation [J].
Dowling, N. E. ;
Calhoun, C. A. ;
Arcari, A. .
FATIGUE & FRACTURE OF ENGINEERING MATERIALS & STRUCTURES, 2009, 32 (03) :163-179
[8]  
Dowling NormanE., 2007, MECH BEHAV MAT
[9]  
Grover H.J., 1966, Fatigue of Aircraft Structures
[10]  
Howell F.M., 1955, P ASTM, V55, P955