SPATIO-TEMPORAL ATTENTION GRAPH CONVOLUTION NETWORK FOR FUNCTIONAL CONNECTOME CLASSIFICATION

被引:4
作者
Wang, Wenhan [1 ]
Kong, Youyong [1 ]
Hou, Zhenghua [2 ]
Yang, Chunfeng [1 ]
Yuan, Yonggui [2 ]
机构
[1] Southeast Univ, Sch Comp Sci & Engn, Jiangsu Prov Joint Int Res Lab Med Informat Proc, Nanjing, Peoples R China
[2] Southeast Univ, Zhongda Hosp, Sch Med, Dept Psychosomat & Psychiat, Nanjing, Peoples R China
来源
2022 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP) | 2022年
关键词
Mental disorder; functional connectome; graph convolutional network; attention; spatio-temporal;
D O I
10.1109/ICASSP43922.2022.9747464
中图分类号
O42 [声学];
学科分类号
070206 ; 082403 ;
摘要
Numerous evidence has demonstrated the pathophysiology of a number of mental disorders is intimately associated with abnormal changes of dysfunctional integration of brain network. Functional connectome (FC) exhibits a strong discriminative power for mental disorder identification. However, existing methods are insufficient for modeling both spatial correlation and temporal dynamics of FC. In this study, we propose a novel Spatio-Temporal Attention Graph Convolution Network (STAGCN) for FC classification. In spatial domain, we develop attention enhanced graph convolutional network to take advantage of brain regions' topological features. Moreover, a novel multi-head self-attention approach is proposed to capture the temporal relationships among different dynamic FC. Extensive experiments on two tasks of mental disorder diagnosis demonstrate the superior performance of the proposed STAGCN.
引用
收藏
页码:1486 / 1490
页数:5
相关论文
共 19 条
[11]   Estimating time-varying brain connectivity networks from functional MRI time series [J].
Monti, Ricardo Pio ;
Hellyer, Peter ;
Sharp, David ;
Leech, Robert ;
Anagnostopoulos, Christoforos ;
Montana, Giovanni .
NEUROIMAGE, 2014, 103 :427-443
[12]   The dynamic functional connectome: State-of-the-art and perspectives [J].
Preti, Maria Giulia ;
Bolton, Thomas A. W. ;
Van De Ville, Dimitri .
NEUROIMAGE, 2017, 160 :41-54
[13]  
Salman Sartaj Ahmed, 2020, Proceedings of 2020 IEEE International Conference on Progress in Informatics and Computing (PIC), P62, DOI 10.1109/PIC50277.2020.9350749
[14]   Robust Spatial Filtering With Graph Convolutional Neural Networks [J].
Such, Felipe Petroski ;
Sah, Shagan ;
Dominguez, Miguel Alexander ;
Pillai, Suhas ;
Zhang, Chao ;
Michael, Andrew ;
Cahill, Nathan D. ;
Ptucha, Raymond .
IEEE JOURNAL OF SELECTED TOPICS IN SIGNAL PROCESSING, 2017, 11 (06) :884-896
[15]  
Vaswani A, 2017, ADV NEUR IN, V30
[16]  
Velickovic P., 2018, P 6 ICLR
[17]   DS-GCNs: Connectome Classification using Dynamic Spectral Graph Convolution Networks with Assistant Task Training [J].
Xing, Xiaodan ;
Li, Qingfeng ;
Yuan, Mengya ;
Wei, Hao ;
Xue, Zhong ;
Wang, Tao ;
Shi, Feng ;
Shen, Dinggang .
CEREBRAL CORTEX, 2021, 31 (02) :1259-1269
[18]   Study on Presplitting Blasting the Roof Strata of Adjacent Roadway to Control Roadway Deformation [J].
Yang, Xiaojie ;
Hu, Chaowen ;
He, Manchao ;
Wang, Haohao ;
Zhou, Yubo ;
Liu, Xiaoyu ;
Zhen, Enze ;
Ma, Xingen .
SHOCK AND VIBRATION, 2019, 2019
[19]   Functional annotation of human cognitive states using deep graph convolution [J].
Zhang, Yu ;
Tetrel, Loic ;
Thirion, Bertrand ;
Bellec, Pierre .
NEUROIMAGE, 2021, 231