SPATIO-TEMPORAL ATTENTION GRAPH CONVOLUTION NETWORK FOR FUNCTIONAL CONNECTOME CLASSIFICATION

被引:4
作者
Wang, Wenhan [1 ]
Kong, Youyong [1 ]
Hou, Zhenghua [2 ]
Yang, Chunfeng [1 ]
Yuan, Yonggui [2 ]
机构
[1] Southeast Univ, Sch Comp Sci & Engn, Jiangsu Prov Joint Int Res Lab Med Informat Proc, Nanjing, Peoples R China
[2] Southeast Univ, Zhongda Hosp, Sch Med, Dept Psychosomat & Psychiat, Nanjing, Peoples R China
来源
2022 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP) | 2022年
关键词
Mental disorder; functional connectome; graph convolutional network; attention; spatio-temporal;
D O I
10.1109/ICASSP43922.2022.9747464
中图分类号
O42 [声学];
学科分类号
070206 ; 082403 ;
摘要
Numerous evidence has demonstrated the pathophysiology of a number of mental disorders is intimately associated with abnormal changes of dysfunctional integration of brain network. Functional connectome (FC) exhibits a strong discriminative power for mental disorder identification. However, existing methods are insufficient for modeling both spatial correlation and temporal dynamics of FC. In this study, we propose a novel Spatio-Temporal Attention Graph Convolution Network (STAGCN) for FC classification. In spatial domain, we develop attention enhanced graph convolutional network to take advantage of brain regions' topological features. Moreover, a novel multi-head self-attention approach is proposed to capture the temporal relationships among different dynamic FC. Extensive experiments on two tasks of mental disorder diagnosis demonstrate the superior performance of the proposed STAGCN.
引用
收藏
页码:1486 / 1490
页数:5
相关论文
共 19 条
[1]   Tracking Whole-Brain Connectivity Dynamics in the Resting State [J].
Allen, Elena A. ;
Damaraju, Eswar ;
Plis, Sergey M. ;
Erhardt, Erik B. ;
Eichele, Tom ;
Calhoun, Vince D. .
CEREBRAL CORTEX, 2014, 24 (03) :663-676
[2]  
Azevedo T, 2020, IEEE ENG MED BIO, P1120, DOI 10.1109/EMBC44109.2020.9175360
[3]   Complex brain networks: graph theoretical analysis of structural and functional systems [J].
Bullmore, Edward T. ;
Sporns, Olaf .
NATURE REVIEWS NEUROSCIENCE, 2009, 10 (03) :186-198
[4]  
Craddock C., 2013, Frontiers in Neuroinformatics, DOI [10.3389/conf.fninf.2013.09.00041, DOI 10.3389/CONF.FNINF.2013.09.00041]
[5]   Identifying Autism from Resting-State fMRI Using Long Short-Term Memory Networks [J].
Dvornek, Nicha C. ;
Ventola, Pamela ;
Pelphrey, Kevin A. ;
Duncan, James S. .
MACHINE LEARNING IN MEDICAL IMAGING (MLMI 2017), 2017, 10541 :362-370
[6]  
Gadgil Soham, 2020, Med Image Comput Comput Assist Interv, V12267, P528, DOI 10.1007/978-3-030-59728-3_52
[7]   Random Forest Classification of Alcohol Use Disorder Using fMRI Functional Connectivity, Neuropsychological Functioning, and Impulsivity Measures [J].
Kamarajan, Chella ;
Ardekani, Babak A. ;
Pandey, Ashwini K. ;
Kinreich, Sivan ;
Pandey, Gayathri ;
Chorlian, David B. ;
Meyers, Jacquelyn L. ;
Zhang, Jian ;
Bermudez, Elaine ;
Stimus, Arthur T. ;
Porjesz, Bernice .
BRAIN SCIENCES, 2020, 10 (02)
[8]   Spatio-temporal graph convolutional network for diagnosis and treatment response prediction of major depressive disorder from functional connectivity [J].
Kong, Youyong ;
Gao, Shuwen ;
Yue, Yingying ;
Hou, Zhenhua ;
Shu, Huazhong ;
Xie, Chunming ;
Zhang, Zhijun ;
Yuan, Yonggui .
HUMAN BRAIN MAPPING, 2021, 42 (12) :3922-3933
[9]   Brain Decoding from Functional MRI Using Long Short-Term Memory Recurrent Neural Networks [J].
Li, Hongming ;
Fan, Yong .
MEDICAL IMAGE COMPUTING AND COMPUTER ASSISTED INTERVENTION, PT III, 2018, 11072 :320-328
[10]   Meta-analysis of Perinatal Pelvic Floor Muscle Training on Urinary Incontinence [J].
Lu, Ji ;
Zhang, Hong ;
Liu, Li ;
Jin, Wei ;
Gao, Jie ;
Min, Min ;
Fan, Ying .
WESTERN JOURNAL OF NURSING RESEARCH, 2021, 43 (06) :597-605