Titanium carbide nanocube core induced interfacial growth of crystalline polypyrrole/polyvinyl alcohol lamellar shell for wide-temperature range supercapacitors

被引:52
作者
Weng, Yu-Ting [1 ]
Pan, Hsiao-An [1 ]
Wu, Nae-Lih [1 ]
Chen, Geroge Zheng [2 ]
机构
[1] Natl Taiwan Univ, Dept Chem Engn, Taipei 106, Taiwan
[2] Univ Nottingham, Dept Chem & Environm Engn, Nottingham NG7 2RD, England
基金
英国工程与自然科学研究理事会;
关键词
Conducting polymer; Interfacial crystallization; Polypyrrole; TiC; Wide- temperature supercapacitor; POLYMER NANOCOMPOSITES; COMPOSITE; CAPACITANCE; DISPERSION; FILMS;
D O I
10.1016/j.jpowsour.2014.10.158
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
This is the first investigation on electrically conducting polymers-based supercapacitor electrodes over a wide temperature range, from -18 degrees C to 60 degrees C. A high-performance supercapacitor electrode material consisting of TiC nanocube core and conformal crystalline polypyrrole (PPy)/poly-vinyl-alcohol (PVA) lamellar shell has been synthesized by heterogeneous nucleation-induced interfacial crystallization. PPy is induced to crystallize on the negatively charged TiC nanocube surfaces via strong interfacial interactions. In this organic-inorganic hybrid nanocomposite, the long chain PVA enables enhanced cycle life due to improved mechanical properties, and the TiC nanocube not only contributes to electron conduction, but also dictates the PPy morphology/crystallinity for maximizing the charging-discharging performance. The crystalline PPy/PAV layer on the TiC nanocube offers unprecedented high capacity (>350 F g(-1)-PPy at 300 mV s(-1) with Delta V = 1.6 V) and cycling stability in a temperature range from -18 degrees C to 60 degrees C. The presented hybrid-filler and interfacial crystallization strategies can be applied to the exploration of new-generation high-power conducting polymer-based supercapacitor materials. (C) 2014 Elsevier B.V. All rights reserved.
引用
收藏
页码:1118 / 1125
页数:8
相关论文
共 35 条
[1]   Nanostructured materials for advanced energy conversion and storage devices [J].
Aricò, AS ;
Bruce, P ;
Scrosati, B ;
Tarascon, JM ;
Van Schalkwijk, W .
NATURE MATERIALS, 2005, 4 (05) :366-377
[2]  
Balci N, 1997, J APPL POLYM SCI, V64, P667, DOI 10.1002/(SICI)1097-4628(19970425)64:4<667::AID-APP5>3.0.CO
[3]  
2-L
[4]   Flexible Zn2SnO4/MnO2 Core/Shell Nanocable-Carbon Microfiber Hybrid Composites for High-Performance Supercapacitor Electrodes [J].
Bao, Lihong ;
Zang, Jianfeng ;
Li, Xiaodong .
NANO LETTERS, 2011, 11 (03) :1215-1220
[5]   Polypyrrole nanocomposite made by polypyrrole dispersion in poly (vinyl alcohol) matrix [J].
Bhadra, J. ;
Sarkar, D. .
INDIAN JOURNAL OF PHYSICS, 2010, 84 (10) :1321-1325
[6]   Conducting polymer nanocomposites: A brief overview [J].
Gangopadhyay, R ;
De, A .
CHEMISTRY OF MATERIALS, 2000, 12 (03) :608-622
[7]   Energy storage in electrochemical capacitors: designing functional materials to improve performance [J].
Hall, Peter J. ;
Mirzaeian, Mojtaba ;
Fletcher, S. Isobel ;
Sillars, Fiona B. ;
Rennie, Anthony J. R. ;
Shitta-Bey, Gbolahan O. ;
Wilson, Grant ;
Cruden, Andrew ;
Carter, Rebecca .
ENERGY & ENVIRONMENTAL SCIENCE, 2010, 3 (09) :1238-1251
[8]   The thermal degradation of poly(vinyl alcohol) [J].
Holland, BJ ;
Hay, JN .
POLYMER, 2001, 42 (16) :6775-6783
[9]   Crystallization driven formation of conducting polymer networks in polymer blends [J].
Hopkins, AR ;
Reynolds, JR .
MACROMOLECULES, 2000, 33 (14) :5221-5226
[10]   Design and Synthesis of Hierarchical MnO2 Nanospheres/Carbon Nanotubes/Conducting Polymer Ternary Composite for High Performance Electrochemical Electrodes [J].
Hou, Ye ;
Cheng, Yingwen ;
Hobson, Tyler ;
Liu, Jie .
NANO LETTERS, 2010, 10 (07) :2727-2733