HOMOLOGY OF ORIGAMIS WITH SYMMETRIES

被引:9
作者
Matheus, Carlos [1 ]
Yoccoz, Jean-Christophe [2 ]
Zmiaikou, David [3 ]
机构
[1] Univ Paris 13, Sorbonne Paris Cite, LAGA, CNRS,UMR 7539, F-93430 Villetaneuse, France
[2] Coll France PSL, F-75005 Paris, France
[3] Univ Paris 11, Dept Math, F-91405 Orsay, France
关键词
Origamis; square-tiled surfaces; automorphisms group; affine group; representations of finite groups; regular and quasi-regular origamis; Kontsevich-Zorich cocycle; Lyapunov exponents; TEICHMULLER CURVES; LYAPUNOV; TRANSFORMATIONS; DEVIATION; SURFACES; SPACE;
D O I
10.5802/aif.2876
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Given an origami (square-tiled surface) M with automorphism group Gamma, we compute the decomposition of the first homology group of M into isotypic Gamma-submodules. Through the action of the affine group of M on the homology group, we deduce some consequences for the multiplicities of the Lyapunov exponents of the Kontsevich-Zorich cocycle. We also construct and study several families of interesting origamis illustrating our results.
引用
收藏
页码:1131 / 1176
页数:46
相关论文
共 30 条
[1]   Simplicity of Lyapunov spectra: proof of the Zorich-Kontsevich conjecture [J].
Avila, Artur ;
Viana, Marcelo .
ACTA MATHEMATICA, 2007, 198 (01) :1-56
[2]   Euler characteristics of Teichmuller curves in genus two [J].
Bainbridge, Matt .
GEOMETRY & TOPOLOGY, 2007, 11 :1887-2073
[3]   Teichmuller curves, triangle groups, and Lyapunov exponents [J].
Bouw, Irene I. ;
Moeller, Martin .
ANNALS OF MATHEMATICS, 2010, 172 (01) :139-185
[4]   Nonvarying sums of Lyapunov exponents of Abelian differentials in low genus [J].
Chen, Dawei ;
Moeller, Martin .
GEOMETRY & TOPOLOGY, 2012, 16 (04) :2427-2479
[5]  
CORNULIER Y., 2004, FORMES BILINEAIRES I
[6]   LYAPUNOV SPECTRUM OF SQUARE-TILED CYCLIC COVERS [J].
Eskin, Alex ;
Kontsevich, Maxim ;
Zorich, Anton .
JOURNAL OF MODERN DYNAMICS, 2011, 5 (02) :319-353
[7]   Deviation of ergodic averages for area-preserving flows on surfaces of higher genus [J].
Forni, G .
ANNALS OF MATHEMATICS, 2002, 155 (01) :1-103
[8]  
Fulton W., 1991, REPRESENTATION THEOR
[9]  
Gutkin E, 2000, DUKE MATH J, V103, P191
[10]   An extraordinary origami curve [J].
Herrlich, Frank ;
Schmithuesen, Gabriela .
MATHEMATISCHE NACHRICHTEN, 2008, 281 (02) :219-237