An investigation into explicit versions of Burgess' bound

被引:4
作者
Francis, Forrest J. [1 ]
机构
[1] UNSW Canberra ADFA, Sch Sci, Northcott Dr, Campbell, ACT 2600, Australia
关键词
Character sums; Burgess' bound; Polya-Vinogradov; kth power non-residues; Norm-Euclidean cyclic fields;
D O I
10.1016/j.jnt.2021.03.018
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let chi be a Dirichlet character modulo p, a prime. In applications, one often needs estimates for short sums involving chi. One such estimate is the family of bounds known as Burgess' bound. In this paper, we explore several adjustments one can make to the work of Trevino [11] in obtaining explicit versions of Burgess' bound. For an application, we investigate the problem of the existence of a kth power non-residue modulo p which is less than p(alpha) for several fixed alpha. We also provide a quick improvement to the conductor bounds for norm-Euclidean cyclic fields found in [7]. (C) 2021 Elsevier Inc. All rights reserved.
引用
收藏
页码:87 / 107
页数:21
相关论文
共 13 条
[1]  
Burgess D. A., 1963, P LOND MATH SOC, V13, P524, DOI DOI 10.1112/PLMS/S3-13.1.524
[2]  
Burgess D.A., 1962, Proc. London Math. Soc., V12, P193, DOI [DOI 10.1112/PLMS/S3-12.1.193, 10.1112/plms/s3-12.1.193]
[3]  
BURGESS DA, 1986, J LOND MATH SOC, V33, P219
[4]  
Dona D., 2019, ARXIV190601097 ARXIV190601097
[5]   A generalization of the Plya-Vinogradov inequality [J].
Frolenkov, D. A. ;
Soundararajan, K. .
RAMANUJAN JOURNAL, 2013, 31 (03) :271-279
[6]   Explicit upper bound for the average number of divisors of irreducible quadratic polynomials (vol 186, pg 663, 2018) [J].
Lapkova, Kostadinka .
MONATSHEFTE FUR MATHEMATIK, 2018, 186 (04) :675-678
[7]   THE EUCLIDEAN ALGORITHM IN QUINTIC AND SEPTIC CYCLIC FIELDS [J].
Lezowski, Pierre ;
Mcgown, Kevin J. .
MATHEMATICS OF COMPUTATION, 2017, 86 (307) :2535-2549
[8]   NORM-EUCLIDEAN CYCLIC FIELDS OF PRIME DEGREE [J].
McGown, Kevin J. .
INTERNATIONAL JOURNAL OF NUMBER THEORY, 2012, 8 (01) :227-254
[9]  
Montgomery H.L., 2007, MULTIPLICATIVE NUMBE
[10]  
Pillai S.S., 1930, Journal of the London Mathematical Society, V5, P95