Role of oxygen vacancies in deciding the high temperature magnetic properties of Ba and Sm substituted BiFeO3 ceramics

被引:14
作者
Zhang, N. [1 ,2 ]
Yang, Y. W. [1 ]
Su, J. [1 ]
Guo, D. Z. [1 ]
Liu, X. N. [1 ]
Ma, N. [1 ]
Liu, Z. M. [1 ]
Zhao, M. [1 ]
Li, X. T. [1 ]
Guo, Y. Y. [3 ]
Chang, F. G. [1 ]
Liu, J. -M. [2 ]
机构
[1] Henan Normal Univ, Dept Phys, Henan Key Lab Photovolta Mat, Xinxiang 453007, Peoples R China
[2] Nanjing Univ, Lab Solid State Microstruct, Nanjing 210093, Jiangsu, Peoples R China
[3] Nanjing Univ Posts & Telecommun, Coll Elect Sci & Engn, Nanjing 210003, Jiangsu, Peoples R China
关键词
BiFeO3; Oxygen vacancies; Magnetic property; FERROELECTRIC PROPERTIES; MULTIFERROIC PROPERTIES; RARE-EARTH; POLARIZATION; SIZE;
D O I
10.1016/j.jallcom.2016.03.262
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
A series of Bi(1-x)A(x)FeO(3) (A = Ba2+, Sm3+) compounds have been synthesized in order to reveal the influence of oxygen vacancies on the magnetic behavior of BiFeO3. While the rhombohedral structure is retained for all compositions (0 <= x <= 0.2), the Ba2+ and Sm3+ substitution induces different structural disorder, leading to an enhancement in magnetization. Temperature dependence of magnetization between 300 K and 900 K indicates that the increased oxygen vacancy due to Ba2+ substitution gradually turns the original antiferromagnetic behavior of BiFeO3 into a ferromagnetic one. In contrast, the antiferromagnetic nature of BiFeO3 is maintained in the whole Sm3+ substitution range, in which the concentration of oxygen vacancies is preserved. This result reveals unambiguously that the oxygen vacancies also play a crucial role in deciding the magnetic behavior of BiFeO3. The intrinsic magnetic property of BiFeO3 is originated from not only the Fe3+/Fe3+ but also the unbalanced Fe3+/Fe2+ antiferromagnetic superexchange interactions. (C) 2016 Elsevier B.V. All rights reserved.
引用
收藏
页码:252 / 257
页数:6
相关论文
共 39 条
[1]   Effect of O-vacancies on magnetic properties of bismuth ferrite nanoparticles by solution evaporation method [J].
Afzal, A. M. ;
Umair, M. ;
Dastgeer, G. ;
Rizwan, M. ;
Yaqoob, M. Z. ;
Rashid, R. ;
Munir, H. S. .
JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS, 2016, 399 :77-80
[2]   X-ray diffraction and magnetization studies of BiFeO3 multiferroic compounds substituted by Sm3+, Gd3+, Ca2+ [J].
Al-Haj, Mansour .
CRYSTAL RESEARCH AND TECHNOLOGY, 2010, 45 (01) :89-93
[3]   Structural, dielectric, and magnetic properties of La0.8Bi0.2Fe1-xMnxO3 (0.0≤x≤0.4) multiferroics [J].
Anjum, G. ;
Kumar, Ravi ;
Mollah, S. ;
Shukla, D. K. ;
Kumar, Shalendra ;
Lee, C. G. .
JOURNAL OF APPLIED PHYSICS, 2010, 107 (10)
[4]   Effect of alkaline earth metal doping on thermal, optical, magnetic and dielectric properties of BiFeO3 nanoparticles [J].
Bhushan, B. ;
Basumallick, A. ;
Bandopadhyay, S. K. ;
Vasanthacharya, N. Y. ;
Das, D. .
JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2009, 42 (06)
[5]   Study of structural, ferromagnetic and ferroelectric properties of nanostructured barium doped Bismuth Ferrite [J].
Chaudhuri, A. ;
Mandal, K. .
JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS, 2014, 353 :57-64
[6]   Structural, vibrational, optical, magnetic and dielectric properties of Bi1-xBaxFeO3 nanoparticles [J].
Chauhan, Sunil ;
Arora, Manisha ;
Sati, P. C. ;
Chhoker, Sandeep ;
Katyal, S. C. ;
Kumar, Manoj .
CERAMICS INTERNATIONAL, 2013, 39 (06) :6399-6405
[7]   Multiferroics: a magnetic twist for ferroelectricity [J].
Cheong, Sang-Wook ;
Mostovoy, Maxim .
NATURE MATERIALS, 2007, 6 (01) :13-20
[8]   Aliovalent Ba2+ doping: A way to reduce oxygen vacancy in multiferroic BiFeO3 [J].
Das, Rajasree ;
Sharma, Sucheta ;
Mandal, Kalyan .
JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS, 2016, 401 :129-137
[9]   Magnetic, ferroelectric and magnetoelectric properties of Ba-doped BiFeO3 [J].
Das, Rajasree ;
Mandal, K. .
JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS, 2012, 324 (11) :1913-1918
[10]   Effect of particle size on multiferroism of barium-doped bismuth ferrite nanoparticles [J].
Dhir, Gitanjali ;
Uniyal, Poonam ;
Verma, N. K. .
MATERIALS SCIENCE IN SEMICONDUCTOR PROCESSING, 2014, 27 :611-618