Analysis of eigenvalues and eigenvectors of polymer particles: random normal modes

被引:13
作者
Fukui, K
Sumpter, BG
Noid, DW
Yang, C [1 ]
Tuzun, RE
机构
[1] Oak Ridge Natl Lab, Div Math & Comp Sci, Oak Ridge, TN 37831 USA
[2] SUNY Coll Brockport, Computat Sci Program, Brockport, NY 14420 USA
[3] Oak Ridge Natl Lab, Div Chem & Analyt Sci, Oak Ridge, TN 37831 USA
来源
COMPUTATIONAL AND THEORETICAL POLYMER SCIENCE | 2001年 / 11卷 / 03期
关键词
Poisson behavior; Wigner distribution; Stewart's perturbation theory;
D O I
10.1016/S1089-3156(00)00015-5
中图分类号
O63 [高分子化学(高聚物)];
学科分类号
070305 ; 080501 ; 081704 ;
摘要
We investigate the density of vibrational states g(omega) for 6000 atom polymer particles involving all 18,000 degrees of freedom. The particles are efficiently generated using a molecular dynamics-based computational algorithm and a molecular mechanics method. The density of states spectrum g(w) clearly shows two distinguishable frequency regions in the polymer system: high (760 < <omega> < 1240 cm(-1)) and low (0 < omega < 350 cm(-1)) frequency modes. By calculating the level-spacing distributions, we find the distribution of the low eigenfrequency corresponds to that of a Wigner distribution. In contrast, Poisson behavior is found for the high frequency region. The eigenvectors for the two regions are analyzed by using a random walk method and Stewart's perturbation theory, both indicate random character for the eigenvectors of the low frequency modes. The random character of the eigenvectors should have ramifications to most types of spectroscopy since transformations of the transition operator to random normal coordinates will cause a widespread mixing, i.e., no selection rules. (C) 2000 Elsevier Science Ltd. All rights reserved.
引用
收藏
页码:191 / 196
页数:6
相关论文
共 32 条
[1]  
[Anonymous], 1992, Chaos and Fractals
[2]   Probing phase-separation behavior in polymer-blend microparticles: Effects of particle size and polymer mobility [J].
Barnes, MD ;
Ng, KC ;
Fukui, K ;
Sumpter, BG ;
Noid, DW .
MACROMOLECULES, 1999, 32 (21) :7183-7189
[3]   Homogeneous polymer blend microparticles with a tunable refractive index [J].
Barnes, MD ;
Kung, CY ;
Lermer, N ;
Fukui, K ;
Sumpter, BG ;
Noid, DW ;
Otaigbe, JU .
OPTICS LETTERS, 1999, 24 (03) :121-123
[4]   HARMONIC-ANALYSIS OF LARGE SYSTEMS .1. METHODOLOGY [J].
BROOKS, BR ;
JANEZIC, D ;
KARPLUS, M .
JOURNAL OF COMPUTATIONAL CHEMISTRY, 1995, 16 (12) :1522-1542
[5]   ROTATION OF EIGENVECTORS BY A PERTURBATION .3. [J].
DAVIS, C ;
KAHAN, WM .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1970, 7 (01) :1-&
[6]   Numerical study of low-frequency vibrations in amorphous silicon [J].
Feldman, JL ;
Allen, PB ;
Bickham, SR .
PHYSICAL REVIEW B, 1999, 59 (05) :3551-3559
[7]  
FELDSTEIN VA, 1993, J ULTRAS MED, V12, P589
[8]  
Fletcher R., 1981, PRACTICAL METHODS OP
[9]   Collision dynamics and surface wetting of nano-scale polymer particles on substrates [J].
Fukui, K ;
Sumpter, BG ;
Runge, K ;
Kung, CY ;
Barnes, MD ;
Noid, DW .
CHEMICAL PHYSICS, 1999, 244 (2-3) :339-349
[10]  
Fukui K, 1999, MACROMOL THEOR SIMUL, V8, P38, DOI 10.1002/(SICI)1521-3919(19990101)8:1<38::AID-MATS38>3.0.CO