LINEAR CONIC OPTIMIZATION FOR INVERSE OPTIMAL CONTROL

被引:20
作者
Pauwels, Edouard [1 ]
Henrion, Didier [2 ,3 ]
Lasserre, Jean-Bernard [2 ,4 ]
机构
[1] Univ Toulouse, IRIT, Toulouse, France
[2] Univ Toulouse, CNRS, LAAS, Toulouse, France
[3] Czech Tech Univ, Fac Elect Engn, Tech 2, CZ-16626 Prague, Czech Republic
[4] Univ Toulouse, CNRS, Inst Math, Toulouse, France
基金
欧洲研究理事会;
关键词
inverse optimal control; nonlinear optimal control; conic duality; semidefinite programming; NONLINEAR OPTIMAL-CONTROL; STABILIZATION;
D O I
10.1137/14099454X
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We address the inverse problem of Lagrangian identification based on trajectories in the context of nonlinear optimal control. We propose a general formulation of the inverse problem based on occupation measures and complementarity in linear programming. The use of occupation measures in this context offers several advantages from the theoretical, numerical, and statistical points of view. We propose an approximation procedure for which strong theoretical guarantees are available. Finally, the relevance of the method is illustrated on academic examples.
引用
收藏
页码:1798 / 1825
页数:28
相关论文
共 46 条
[1]   HOW HUMANS FLY [J].
Ajami, Alain ;
Gauthier, Jean-Paul ;
Maillot, Thibault ;
Serres, Ulysse .
ESAIM-CONTROL OPTIMISATION AND CALCULUS OF VARIATIONS, 2013, 19 (04) :1030-1054
[2]  
[Anonymous], 1967, Optimality principles in biology
[3]  
[Anonymous], 2008, OPTIMAL CONTROL VISC
[4]  
[Anonymous], 2004, P INT C MACH LEARN
[5]  
[Anonymous], 1971, Linear Optimal Control by Brian DO Anderson
[6]   An optimality principle governing human walking [J].
Arechavaleta, Gustavo ;
Laumond, Jean-Paul ;
Hicheur, Halim ;
Berthoz, Alain .
IEEE TRANSACTIONS ON ROBOTICS, 2008, 24 (01) :5-14
[7]  
Athans M., 2013, OPTIMAL CONTROL INTR
[8]  
Barvinok A., 2002, A Course in Convexity
[9]  
Bousquet O, 2004, LECT NOTES ARTIF INT, V3176, P169
[10]   ON THE GENERAL INVERSE PROBLEM OF OPTIMAL-CONTROL THEORY [J].
CASTI, J .
JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 1980, 32 (04) :491-497