Coupling of climate models and ice sheet models by surface mass balance gradients: application to the Greenland Ice Sheet

被引:41
作者
Helsen, M. M. [1 ]
van de Wal, R. S. W. [1 ]
van den Broeke, M. R. [1 ]
van de Berg, W. J. [1 ]
Oerlemans, J. [1 ]
机构
[1] Inst Marine & Atmospher Res Utrecht, NL-3508 TA Utrecht, Netherlands
关键词
LAST GLACIAL MAXIMUM; ENERGY BALANCE; TEMPERATURE; RETREAT; SIMULATIONS; CONSTRAINTS; VARIABILITY; SENSITIVITY; ISOTOPE; CYCLE;
D O I
10.5194/tc-6-255-2012
中图分类号
P9 [自然地理学];
学科分类号
0705 ; 070501 ;
摘要
It is notoriously difficult to couple surface mass balance (SMB) results from climate models to the changing geometry of an ice sheet model. This problem is traditionally avoided by using only accumulation from a climate model, and parameterizing the meltwater run-off as a function of temperature, which is often related to surface elevation (H-s). In this study, we propose a new strategy to calculate SMB, to allow a direct adjustment of SMB to a change in ice sheet topography and/or a change in climate forcing. This method is based on elevational gradients in the SMB field as computed by a regional climate model. Separate linear relations are derived for ablation and accumulation, using pairs of H-s and SMB within a minimum search radius. The continuously adjusting SMB forcing is consistent with climate model forcing fields, also for initially non-glaciated areas in the peripheral areas of an ice sheet. When applied to an asynchronous coupled ice sheet - climate model setup, this method circumvents traditional temperature lapse rate assumptions. Here we apply it to the Greenland Ice Sheet (GrIS). Experiments using both steady-state forcing and glacial-interglacial forcing result in realistic ice sheet reconstructions.
引用
收藏
页码:255 / 272
页数:18
相关论文
共 59 条
[41]   Simulating arctic climate warmth and icefield retreat in the last interglaciation [J].
Otto-Bliesner, BL ;
Marsha, SJ ;
Overpeck, JT ;
Miller, GH ;
Hu, AX .
SCIENCE, 2006, 311 (5768) :1751-1753
[42]   RETENTION OF GREENLAND RUNOFF BY REFREEZING - IMPLICATIONS FOR PROJECTED FUTURE SEA-LEVEL CHANGE [J].
PFEFFER, WT ;
MEIER, MF ;
ILLANGASEKARE, TH .
JOURNAL OF GEOPHYSICAL RESEARCH-OCEANS, 1991, 96 (C12) :22117-22124
[43]  
REEH N, 1991, POLARFORSCHUNG, V0059
[44]   Mapping technique of climate fields between GCM's and ice models [J].
Reerink, T. J. ;
Kliphuis, M. A. ;
van de Wal, R. S. W. .
GEOSCIENTIFIC MODEL DEVELOPMENT, 2010, 3 (01) :13-41
[45]  
Reijmer C. H., 2011, CRYOSPHERE DISCUSS, V5, P2723, DOI [10.5194/tcd-5-2723-2011, DOI 10.5194/TCD-5-2723-2011]
[46]   Sensitivity of a Greenland ice sheet model to ice flow and ablation parameters: Consequences for the evolution through the last climatic cycle [J].
Ritz, C ;
Fabre, A ;
Letreguilly, A .
CLIMATE DYNAMICS, 1996, 13 (01) :11-24
[47]   Greenland ice sheet model parameters constrained using simulations of the Eemian Interglacial [J].
Robinson, A. ;
Calov, R. ;
Ganopolski, A. .
CLIMATE OF THE PAST, 2011, 7 (02) :381-396
[48]   An efficient regional energy-moisture balance model for simulation of the Greenland Ice Sheet response to climate change [J].
Robinson, A. ;
Calov, R. ;
Ganopolski, A. .
CRYOSPHERE, 2010, 4 (02) :129-144
[49]   Greenland glacial history and local geodynamic consequences [J].
Tarasov, L ;
Peltier, WR .
GEOPHYSICAL JOURNAL INTERNATIONAL, 2002, 150 (01) :198-229
[50]   The ERA-40 re-analysis [J].
Uppala, SM ;
Kållberg, PW ;
Simmons, AJ ;
Andrae, U ;
Bechtold, VD ;
Fiorino, M ;
Gibson, JK ;
Haseler, J ;
Hernandez, A ;
Kelly, GA ;
Li, X ;
Onogi, K ;
Saarinen, S ;
Sokka, N ;
Allan, RP ;
Andersson, E ;
Arpe, K ;
Balmaseda, MA ;
Beljaars, ACM ;
Van De Berg, L ;
Bidlot, J ;
Bormann, N ;
Caires, S ;
Chevallier, F ;
Dethof, A ;
Dragosavac, M ;
Fisher, M ;
Fuentes, M ;
Hagemann, S ;
Hólm, E ;
Hoskins, BJ ;
Isaksen, L ;
Janssen, PAEM ;
Jenne, R ;
McNally, AP ;
Mahfouf, JF ;
Morcrette, JJ ;
Rayner, NA ;
Saunders, RW ;
Simon, P ;
Sterl, A ;
Trenberth, KE ;
Untch, A ;
Vasiljevic, D ;
Viterbo, P ;
Woollen, J .
QUARTERLY JOURNAL OF THE ROYAL METEOROLOGICAL SOCIETY, 2005, 131 (612) :2961-3012