Stacked Sparse Autoencoder in PolSAR Data Classification Using Local Spatial Information

被引:118
|
作者
Zhang, Lu [1 ]
Ma, Wenping [1 ]
Zhang, Dan [1 ]
机构
[1] Xidian Univ, Joint Int Res Lab Intelligent Percept & Computat, Key Lab Intelligent Percept & Image Understanding, Int Res Ctr Intelligent Percept & Computat,Minist, Xian 710071, Peoples R China
基金
中国国家自然科学基金;
关键词
Deep learning; image classification; local spatial information; polarimetric synthetic aperture radar (PolSAR); sparse; stacked sparse autoencoder (SSAE); LAND-COVER; NEURAL-NETWORK; SAR IMAGES;
D O I
10.1109/LGRS.2016.2586109
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
Terrain classification is an important topic in polarimetric synthetic aperture radar (PolSAR) image processing. Among various classification techniques, the stacked sparse autoencoder (SSAE) is a kind of deep learning method that can automatically learn useful features layer by layer in an unsupervised manner. However, the scattering measurements of individual pixels in PolSAR images are affected by the speckle; hence, the performance of pixel-based classification approaches would be poor. In this situation, a novel framework is proposed to learn robust features of PolSAR data. The local spatial information is introduced into SSAE to learn the deep spatial sparse features automatically for the first time. Furthermore, the influences of the neighbor pixels on the central pixel are controlled depending on the spatial distances from the neighbor pixels to the central pixel. Experimental results with fully PolSAR data indicate that the proposed method provides a competitive solution.
引用
收藏
页码:1359 / 1363
页数:5
相关论文
共 50 条
  • [31] Nearest-Regularized Subspace Classification for PolSAR Imagery Using Polarimetric Feature Vector and Spatial Information
    Zhang, Fan
    Ni, Jun
    Yin, Qiang
    Li, Wei
    Li, Zheng
    Liu, Yifan
    Hong, Wen
    REMOTE SENSING, 2017, 9 (11)
  • [32] Classification of Silent Speech in English and Bengali Languages Using Stacked Autoencoder
    Ghosh R.
    Sinha N.
    Phadikar S.
    SN Computer Science, 3 (5)
  • [33] Exploring Fuzzy Local Spatial Information Algorithms for Remote Sensing Image Classification
    Madhu, Anjali
    Kumar, Anil
    Jia, Peng
    REMOTE SENSING, 2021, 13 (20)
  • [34] Fruit category classification by fractional Fourier entropy with rotation angle vector grid and stacked sparse autoencoder
    Zhang, Yu-Dong
    Satapathy, Suresh Chandra
    Wang, Shui-Hua
    EXPERT SYSTEMS, 2022, 39 (03)
  • [35] Computer-aided classification of prostate cancer grade groups from MRI images using texture features and stacked sparse autoencoder
    Abraham, Bejoy
    Nair, Madhu S.
    COMPUTERIZED MEDICAL IMAGING AND GRAPHICS, 2018, 69 : 60 - 68
  • [36] A Semi-Supervised Stacked Autoencoder Using the Pseudo Label for Classification Tasks
    Lai, Jie
    Wang, Xiaodan
    Xiang, Qian
    Quan, Wen
    Song, Yafei
    ENTROPY, 2023, 25 (09)
  • [37] Experiments on classification of electroencephalography (EEG) signals in imagination of direction using Stacked Autoencoder
    Tomonaga, Kenta
    Hayakawa, Takuya
    Kobayashi, Jun
    ICAROB 2017: PROCEEDINGS OF THE 2017 INTERNATIONAL CONFERENCE ON ARTIFICIAL LIFE AND ROBOTICS, 2017, : P468 - P471
  • [38] Composite Kernel Method for PolSAR Image Classification Based on Polarimetric-Spatial Information
    Wang, Xianyuan
    Cao, Zongjie
    Ding, Yao
    Feng, Jilan
    APPLIED SCIENCES-BASEL, 2017, 7 (06):
  • [39] Power Quality Disturbances Classification Using Sparse Autoencoder (SAE) Based on Deep Neural Network
    Manan, Nurul Asiah
    Shahbudin, Shahrani
    Kassim, Murizah
    Mohamad, Roslina
    Rahman, Farah Yasmin Abdul
    11TH IEEE SYMPOSIUM ON COMPUTER APPLICATIONS & INDUSTRIAL ELECTRONICS (ISCAIE 2021), 2021, : 19 - 22
  • [40] Gaofen-3 PolSAR Image Classification via XGBoost and Polarimetric Spatial Information
    Dong, Hao
    Xu, Xin
    Wang, Lei
    Pu, Fangling
    SENSORS, 2018, 18 (02)