Stacked Sparse Autoencoder in PolSAR Data Classification Using Local Spatial Information

被引:119
|
作者
Zhang, Lu [1 ]
Ma, Wenping [1 ]
Zhang, Dan [1 ]
机构
[1] Xidian Univ, Joint Int Res Lab Intelligent Percept & Computat, Key Lab Intelligent Percept & Image Understanding, Int Res Ctr Intelligent Percept & Computat,Minist, Xian 710071, Peoples R China
基金
中国国家自然科学基金;
关键词
Deep learning; image classification; local spatial information; polarimetric synthetic aperture radar (PolSAR); sparse; stacked sparse autoencoder (SSAE); LAND-COVER; NEURAL-NETWORK; SAR IMAGES;
D O I
10.1109/LGRS.2016.2586109
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
Terrain classification is an important topic in polarimetric synthetic aperture radar (PolSAR) image processing. Among various classification techniques, the stacked sparse autoencoder (SSAE) is a kind of deep learning method that can automatically learn useful features layer by layer in an unsupervised manner. However, the scattering measurements of individual pixels in PolSAR images are affected by the speckle; hence, the performance of pixel-based classification approaches would be poor. In this situation, a novel framework is proposed to learn robust features of PolSAR data. The local spatial information is introduced into SSAE to learn the deep spatial sparse features automatically for the first time. Furthermore, the influences of the neighbor pixels on the central pixel are controlled depending on the spatial distances from the neighbor pixels to the central pixel. Experimental results with fully PolSAR data indicate that the proposed method provides a competitive solution.
引用
收藏
页码:1359 / 1363
页数:5
相关论文
共 50 条
  • [21] Scattering feature dimension reduction of multitemporal fully PolSAR image based on Stacked Sparse AutoEncoder
    Li H.
    Guo J.
    Han W.
    Liu Y.
    Ning J.
    Yaogan Xuebao/Journal of Remote Sensing, 2020, 24 (11): : 1379 - 1391
  • [22] Multilayer Projective Dictionary Pair Learning and Sparse Autoencoder for PolSAR Image Classification
    Chen, Yanqiao
    Jiao, Licheng
    Li, Yangyang
    Zhao, Jin
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2017, 55 (12): : 6683 - 6694
  • [23] An Improved Stacked Autoencoder for Metabolomic Data Classification
    Fan, Xiaojing
    Wang, Xiye
    Jiang, Mingyang
    Pei, Zhili
    Qiao, Shicheng
    COMPUTATIONAL INTELLIGENCE AND NEUROSCIENCE, 2021, 2021
  • [24] A Modulation Classification Method in Cognitive Radios System using Stacked Denoising Sparse Autoencoder
    Zhu, Xu
    Fujii, Takeo
    2017 IEEE RADIO AND WIRELESS SYMPOSIUM (RWS), 2017, : 218 - 220
  • [25] Stacked Autoencoder Based Feature Extraction and Superpixel Generation for Multifrequency PolSAR Image Classification
    Gadhiya, Tushar
    Tangirala, Sumanth
    Roy, Anil K.
    PATTERN RECOGNITION AND MACHINE INTELLIGENCE, PREMI 2019, PT II, 2019, 11942 : 331 - 339
  • [26] Classification of data on stacked autoencoder using modified sigmoid activation function
    Kumar, Arvind
    Sodhi, Sartaj Singh
    JOURNAL OF INTELLIGENT & FUZZY SYSTEMS, 2023, 44 (01) : 1 - 18
  • [27] Classification of Imbalanced Bioassay Data with Features Learned Using Stacked Autoencoder
    Shah, Jeni
    Joshi, Manjunath
    FIFTEENTH INTERNATIONAL CONFERENCE ON MACHINE VISION, ICMV 2022, 2023, 12701
  • [28] Spectral-Spatial Classification of Hyperspectral Images Based on Joint Bilateral Filter and Stacked Sparse Autoencoder
    Wan, Xiaoqing
    Zhao, Chunhui
    Yan, Yiming
    PROCEEDINGS FIRST INTERNATIONAL CONFERENCE ON ELECTRONICS INSTRUMENTATION & INFORMATION SYSTEMS (EIIS 2017), 2017, : 87 - 91
  • [29] Spectral-spatial classification method for hyperspectral images using stacked sparse autoencoder suitable in limited labelled samples situation
    Ahmadi, Seyyed Ali
    Mehrshad, Nasser
    Arghavan, Seyyed Mohammadali
    GEOCARTO INTERNATIONAL, 2022, 37 (07) : 2031 - 2054
  • [30] Stacked Autoencoder Based HRTF Synthesis from Sparse Data
    Bharitkar, Sunil
    Mauer, Timothy
    Wells, Teresa
    Berfanger, David
    2018 ASIA-PACIFIC SIGNAL AND INFORMATION PROCESSING ASSOCIATION ANNUAL SUMMIT AND CONFERENCE (APSIPA ASC), 2018, : 356 - 361