Stacked Sparse Autoencoder in PolSAR Data Classification Using Local Spatial Information

被引:118
|
作者
Zhang, Lu [1 ]
Ma, Wenping [1 ]
Zhang, Dan [1 ]
机构
[1] Xidian Univ, Joint Int Res Lab Intelligent Percept & Computat, Key Lab Intelligent Percept & Image Understanding, Int Res Ctr Intelligent Percept & Computat,Minist, Xian 710071, Peoples R China
基金
中国国家自然科学基金;
关键词
Deep learning; image classification; local spatial information; polarimetric synthetic aperture radar (PolSAR); sparse; stacked sparse autoencoder (SSAE); LAND-COVER; NEURAL-NETWORK; SAR IMAGES;
D O I
10.1109/LGRS.2016.2586109
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
Terrain classification is an important topic in polarimetric synthetic aperture radar (PolSAR) image processing. Among various classification techniques, the stacked sparse autoencoder (SSAE) is a kind of deep learning method that can automatically learn useful features layer by layer in an unsupervised manner. However, the scattering measurements of individual pixels in PolSAR images are affected by the speckle; hence, the performance of pixel-based classification approaches would be poor. In this situation, a novel framework is proposed to learn robust features of PolSAR data. The local spatial information is introduced into SSAE to learn the deep spatial sparse features automatically for the first time. Furthermore, the influences of the neighbor pixels on the central pixel are controlled depending on the spatial distances from the neighbor pixels to the central pixel. Experimental results with fully PolSAR data indicate that the proposed method provides a competitive solution.
引用
收藏
页码:1359 / 1363
页数:5
相关论文
共 50 条
  • [21] Segmentation and classification of intervertebral disc using capsule stacked autoencoder
    Adibatti, Spurthi
    Sudhindra, K. R.
    Shivaram, Joshi Manisha
    BIOMEDICAL SIGNAL PROCESSING AND CONTROL, 2023, 86
  • [22] DEEP LEARNING BASED CLASSIFICATION USING SEMANTIC INFORMATION FOR POLSAR IMAGE
    Zhang, Lu
    Xie, Wen
    Zhao, Feng
    Liu, Hanqiang
    Duan, Yiping
    IGARSS 2020 - 2020 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2020, : 196 - 199
  • [23] Classification of the PolSAR Data Using Dual Classifiers
    Duan, Yan
    Duan, Huili
    Sun, Mingwei
    2018 IEEE 3RD INTERNATIONAL CONFERENCE ON IMAGE, VISION AND COMPUTING (ICIVC), 2018, : 316 - 320
  • [24] Post-fault prediction of transient instabilities using stacked sparse autoencoder
    Mahdi, Mohammed
    Genc, V. M. Istemihan
    ELECTRIC POWER SYSTEMS RESEARCH, 2018, 164 : 243 - 252
  • [25] Polarimetric Contextual Classification of PolSAR Images Using Sparse Representation and Superpixels
    Feng, Jilan
    Cao, Zongjie
    Pi, Yiming
    REMOTE SENSING, 2014, 6 (08) : 7158 - 7181
  • [26] Fault classification based on variable-weighted dynamic sparse stacked autoencoder for industrial processes
    Dong, Jie
    Tu, Yanan
    Peng, Kaixiang
    CANADIAN JOURNAL OF CHEMICAL ENGINEERING, 2023, 101 (01) : 420 - 430
  • [27] STACKED SPARSE AUTOENCODER (SSAE) BASED FRAMEWORK FOR NUCLEI PATCH CLASSIFICATION ON BREAST CANCER HISTOPATHOLOGY
    Xu, Jun
    Xiang, Lei
    Hang, Renlong
    Wu, Jianzhong
    2014 IEEE 11TH INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING (ISBI), 2014, : 999 - 1002
  • [28] Fusion of hyperspectral and LiDAR data using sparse stacked autoencoder for land cover classification with 3D-2D convolutional neural network
    Singh, Manoj Kumar
    Mohan, Shashank
    Kumar, Brajesh
    JOURNAL OF APPLIED REMOTE SENSING, 2022, 16 (03)
  • [29] Lung Sounds Classification Using Stacked Autoencoder and Support Vector Machine
    Falah, Adnan Hassal
    Jondri
    2019 7TH INTERNATIONAL CONFERENCE ON INFORMATION AND COMMUNICATION TECHNOLOGY (ICOICT), 2019, : 460 - 464
  • [30] URBAN CLASSIFICATION USING POLSAR DATA AND DEEP LEARNING
    De, Shaunak
    Bhattacharya, Avik
    2015 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2015, : 353 - 356