Stacked Sparse Autoencoder in PolSAR Data Classification Using Local Spatial Information

被引:119
|
作者
Zhang, Lu [1 ]
Ma, Wenping [1 ]
Zhang, Dan [1 ]
机构
[1] Xidian Univ, Joint Int Res Lab Intelligent Percept & Computat, Key Lab Intelligent Percept & Image Understanding, Int Res Ctr Intelligent Percept & Computat,Minist, Xian 710071, Peoples R China
基金
中国国家自然科学基金;
关键词
Deep learning; image classification; local spatial information; polarimetric synthetic aperture radar (PolSAR); sparse; stacked sparse autoencoder (SSAE); LAND-COVER; NEURAL-NETWORK; SAR IMAGES;
D O I
10.1109/LGRS.2016.2586109
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
Terrain classification is an important topic in polarimetric synthetic aperture radar (PolSAR) image processing. Among various classification techniques, the stacked sparse autoencoder (SSAE) is a kind of deep learning method that can automatically learn useful features layer by layer in an unsupervised manner. However, the scattering measurements of individual pixels in PolSAR images are affected by the speckle; hence, the performance of pixel-based classification approaches would be poor. In this situation, a novel framework is proposed to learn robust features of PolSAR data. The local spatial information is introduced into SSAE to learn the deep spatial sparse features automatically for the first time. Furthermore, the influences of the neighbor pixels on the central pixel are controlled depending on the spatial distances from the neighbor pixels to the central pixel. Experimental results with fully PolSAR data indicate that the proposed method provides a competitive solution.
引用
收藏
页码:1359 / 1363
页数:5
相关论文
共 50 条
  • [1] Classification of PolSAR Images Based on Adaptive Nonlocal Stacked Sparse Autoencoder
    Hu, Yuanyuan
    Fan, Jianchao
    Wang, Jun
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2018, 15 (07) : 1050 - 1054
  • [2] PolSAR image classification based on multi-scale stacked sparse autoencoder
    Zhang, Lu
    Jiao, Licheng
    Ma, Wenping
    Duan, Yiping
    Zhang, Dan
    NEUROCOMPUTING, 2019, 351 : 167 - 179
  • [3] PolSAR Marine Aquaculture Detection Based on Nonlocal Stacked Sparse Autoencoder
    Fan, Jianchao
    Liu, Xiaoxin
    Hu, Yuanyuan
    Han, Min
    ADVANCES IN NEURAL NETWORKS - ISNN 2019, PT II, 2019, 11555 : 469 - 476
  • [4] Spectral-spatial classification of hyperspectral images using trilateral filter and stacked sparse autoencoder
    Zhao, Chunhui
    Wan, Xiaoqing
    Zhao, Genping
    Yan, Yiming
    JOURNAL OF APPLIED REMOTE SENSING, 2017, 11
  • [5] Tensorization of Multifrequency PolSAR Data for Classification Using an Autoencoder Network
    De, Shaunak
    Ratha, Debanshu
    Ratha, Dikshya
    Bhattacharya, Avik
    Chaudhuri, Subhasis
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2018, 15 (04) : 542 - 546
  • [6] Deep Sparse Representation Classification with Stacked Autoencoder
    Xu, Bingxin
    Zhou, Xiuling
    2019 15TH INTERNATIONAL CONFERENCE ON COMPUTATIONAL INTELLIGENCE AND SECURITY (CIS 2019), 2019, : 73 - 77
  • [7] Sparse Inversion of Stacked Autoencoder Classification Machines
    Sarishvili, A.
    Jirstrand, M.
    Adrian, B.
    Wirsen, A.
    PROCEEDINGS OF SEVENTH INTERNATIONAL CONGRESS ON INFORMATION AND COMMUNICATION TECHNOLOGY, VOL 4, 2023, 465 : 617 - 631
  • [8] Local receptive field constrained stacked sparse autoencoder for classification of hyperspectral images
    Wan, Xiaoqing
    Zhao, Chunhui
    JOURNAL OF THE OPTICAL SOCIETY OF AMERICA A-OPTICS IMAGE SCIENCE AND VISION, 2017, 34 (06) : 1011 - 1020
  • [9] Stacked sparse autoencoder in hyperspectral data classification using spectral-spatial, higher order statistics and multifractal spectrum features
    Wan, Xiaoqing
    Zhao, Chunhui
    Wang, Yanchun
    Liu, Wu
    INFRARED PHYSICS & TECHNOLOGY, 2017, 86 : 77 - 89
  • [10] Spectral-spatial feature learning for hyperspectral imagery classification using deep stacked sparse autoencoder
    Abdi, Ghasem
    Samadzadegan, Farhad
    Reinartz, Peter
    JOURNAL OF APPLIED REMOTE SENSING, 2017, 11