Stacked Sparse Autoencoder in PolSAR Data Classification Using Local Spatial Information

被引:118
|
作者
Zhang, Lu [1 ]
Ma, Wenping [1 ]
Zhang, Dan [1 ]
机构
[1] Xidian Univ, Joint Int Res Lab Intelligent Percept & Computat, Key Lab Intelligent Percept & Image Understanding, Int Res Ctr Intelligent Percept & Computat,Minist, Xian 710071, Peoples R China
基金
中国国家自然科学基金;
关键词
Deep learning; image classification; local spatial information; polarimetric synthetic aperture radar (PolSAR); sparse; stacked sparse autoencoder (SSAE); LAND-COVER; NEURAL-NETWORK; SAR IMAGES;
D O I
10.1109/LGRS.2016.2586109
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
Terrain classification is an important topic in polarimetric synthetic aperture radar (PolSAR) image processing. Among various classification techniques, the stacked sparse autoencoder (SSAE) is a kind of deep learning method that can automatically learn useful features layer by layer in an unsupervised manner. However, the scattering measurements of individual pixels in PolSAR images are affected by the speckle; hence, the performance of pixel-based classification approaches would be poor. In this situation, a novel framework is proposed to learn robust features of PolSAR data. The local spatial information is introduced into SSAE to learn the deep spatial sparse features automatically for the first time. Furthermore, the influences of the neighbor pixels on the central pixel are controlled depending on the spatial distances from the neighbor pixels to the central pixel. Experimental results with fully PolSAR data indicate that the proposed method provides a competitive solution.
引用
收藏
页码:1359 / 1363
页数:5
相关论文
共 50 条
  • [1] PolSAR image classification based on multi-scale stacked sparse autoencoder
    Zhang, Lu
    Jiao, Licheng
    Ma, Wenping
    Duan, Yiping
    Zhang, Dan
    NEUROCOMPUTING, 2019, 351 : 167 - 179
  • [2] Classification of Alzheimer's Disease Using Stacked Sparse Convolutional Autoencoder
    Baydargil, Husnu Baris
    Park, Jang-Sik
    Kang, Do-Young
    2019 19TH INTERNATIONAL CONFERENCE ON CONTROL, AUTOMATION AND SYSTEMS (ICCAS 2019), 2019, : 891 - 895
  • [3] PolSAR Marine Aquaculture Detection Based on Nonlocal Stacked Sparse Autoencoder
    Fan, Jianchao
    Liu, Xiaoxin
    Hu, Yuanyuan
    Han, Min
    ADVANCES IN NEURAL NETWORKS - ISNN 2019, PT II, 2019, 11555 : 469 - 476
  • [4] Tensorization of Multifrequency PolSAR Data for Classification Using an Autoencoder Network
    De, Shaunak
    Ratha, Debanshu
    Ratha, Dikshya
    Bhattacharya, Avik
    Chaudhuri, Subhasis
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2018, 15 (04) : 542 - 546
  • [5] Spectral-spatial feature learning for hyperspectral imagery classification using deep stacked sparse autoencoder
    Abdi, Ghasem
    Samadzadegan, Farhad
    Reinartz, Peter
    JOURNAL OF APPLIED REMOTE SENSING, 2017, 11
  • [6] Multiobjective evolutionary algorithm assisted stacked autoencoder for PolSAR image classification
    Liu, Guangyuan
    Li, Yangyang
    Jiao, Licheng
    Chen, Yanqiao
    Shang, Ronghua
    SWARM AND EVOLUTIONARY COMPUTATION, 2021, 60 (60)
  • [7] A stacked convolutional sparse denoising autoencoder model for underwater heterogeneous information data
    Wang, Xingmei
    Zhao, Yixu
    Teng, Xuyang
    Sun, Weiqi
    APPLIED ACOUSTICS, 2020, 167
  • [8] Auto Encoder Feature Learning with Utilization of Local Spatial Information and Data Distribution for Classification of PolSAR Image
    Hou, Biao
    Wang, Jianlong
    Jiao, Licheng
    Wang, Shuang
    REMOTE SENSING, 2019, 11 (11)
  • [9] Classification of PolSAR Image Using Neural Nonlocal Stacked Sparse Autoencoders with Virtual Adversarial Regularization
    Wang, Ruichuan
    Wang, Yanfei
    REMOTE SENSING, 2019, 11 (09)
  • [10] Classification of data on stacked autoencoder using modified sigmoid activation function
    Kumar, Arvind
    Sodhi, Sartaj Singh
    JOURNAL OF INTELLIGENT & FUZZY SYSTEMS, 2023, 44 (01) : 1 - 18