Subdirect products of hereditary congruence lattices

被引:3
作者
Snow, JW [1 ]
机构
[1] Sam Houston State Univ, Dept Math & Stat, Huntsville, TX 77341 USA
关键词
congruence lattice; primitive positive formula; hereditary congruence lattice;
D O I
10.1007/s00012-005-1922-4
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A congruence lattice L of an algebra A is called power-hereditary if every 0-1 sublattice of L-n is the congruence lattice of an algebra on A(n) for all positive integers n. Let A and B be finite algebras. We prove center dot If ConA is distributive, then every subdirect product of ConA and ConB is a congruence lattice on A x B. center dot If ConA is distributive and ConB is power- hereditary, then (ConA) x(ConB) is power-hereditary. center dot If ConA congruent to N-5 and ConB is modular, then every subdirect product of ConA and ConB is a congruence lattice. center dot Every congruence lattice representation of N-5 is power-hereditary.
引用
收藏
页码:65 / 71
页数:7
相关论文
共 7 条
  • [1] [Anonymous], 1979, FUNKTIONEN RELATIONE
  • [2] Bodnarcuk V. G., 1969, Kibernetika (Kiev), V5, P1
  • [3] BODNARCUK VG, 1969, KIBERNETIKA, V3, P1
  • [4] HEGEDUS P, 2004, FINITE MODULAR CONGR
  • [5] Quackenbush R., 1971, ALGEBR UNIV, V1, P165
  • [6] A constructive approach to the finite congruence lattice representation problem
    Snow, JW
    [J]. ALGEBRA UNIVERSALIS, 2000, 43 (2-3) : 279 - 293
  • [7] Snow JW, 2003, ALGEBRA UNIV, V50, P75, DOI 10.1007/s00012-003-1821-5