Regression Estimator for the Tail Index

被引:12
作者
Nemeth, Laszlo [1 ]
Zempleni, Andras [1 ]
机构
[1] Eotvos Lorand Univ, Inst Math, Dept Probabil Theory & Stat, Budapest, Hungary
关键词
Tail index; Bootstrap; Hill estimation; Kolmogorov-Smirnov distance; SAMPLE FRACTION; BOOTSTRAP; INFERENCE; CHOICE;
D O I
10.1007/s42519-020-00114-7
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Estimating the tail index parameter is one of the primal objectives in extreme value theory. For heavy-tailed distributions the Hill estimator is the most popular way to estimate this parameter. Several recent publications' aim was to improve the Hill estimator, using different methods, for example the bootstrap, or the Kolmogorov-Smirnov metric. These methods are asymptotically consistent, but for tail index xi>0.5 the estimations fail to approach the theoretical value for realistic sample sizes. In this paper, we introduce new empirical methods, which combine the advantages of the Kolmogorov-Smirnov approach and the bootstrap. We demonstrate that our estimators are able to estimate large tail index parameters well and might also be useful for relatively small sample sizes. As an application, we consider the classic Danish fire data set and the most destructive natural disasters in Europe.
引用
收藏
页数:23
相关论文
共 30 条
[1]   RESIDUAL LIFE TIME AT GREAT AGE [J].
BALKEMA, AA ;
DEHAAN, L .
ANNALS OF PROBABILITY, 1974, 2 (05) :792-804
[2]  
Bickel PJ, 2008, STAT SINICA, V18, P967
[3]   SOME ASYMPTOTIC THEORY FOR THE BOOTSTRAP [J].
BICKEL, PJ ;
FREEDMAN, DA .
ANNALS OF STATISTICS, 1981, 9 (06) :1196-1217
[4]  
Bickel PJ, 1997, STAT SINICA, V7, P1
[5]   Using a bootstrap method to choose the sample fraction in tail index estimation [J].
Danielsson, J ;
de Haan, L ;
Peng, L ;
de Vries, CG .
JOURNAL OF MULTIVARIATE ANALYSIS, 2001, 76 (02) :226-248
[6]  
Danielsson J., 2019, Discussion paper
[7]   TAIL ESTIMATES MOTIVATED BY EXTREME VALUE THEORY [J].
DAVIS, R ;
RESNICK, S .
ANNALS OF STATISTICS, 1984, 12 (04) :1467-1487
[8]  
DAVISON AC, 1990, J ROY STAT SOC B MET, V52, P393
[9]  
de Haan L., 2006, SPRING S OPERAT RES
[10]   OPTIMAL CHOICE OF SAMPLE FRACTION IN EXTREME-VALUE ESTIMATION [J].
DEKKERS, ALM ;
DEHAAN, L .
JOURNAL OF MULTIVARIATE ANALYSIS, 1993, 47 (02) :173-195