Identification of circular RNAs in cardiac hypertrophy and cardiac fibrosis

被引:15
作者
Chen, Yan [1 ]
Zhou, Junteng [1 ,2 ,3 ]
Wei, Zisong [1 ]
Cheng, Yue [4 ]
Tian, Geer [1 ]
Quan, Yue [1 ]
Kong, Qihang [1 ]
Wu, Wenchao [1 ]
Liu, Xiaojing [1 ,4 ]
机构
[1] Sichuan Univ, West China Hosp, Regenerat Med Res Ctr, Lab Cardiovasc Dis, Chengdu, Peoples R China
[2] Sichuan Univ, West China Hosp, Hlth Management Ctr, Chengdu, Peoples R China
[3] Sichuan Univ, West China Hosp, Lab Cardiovasc Dis, Chengdu, Peoples R China
[4] Sichuan Univ, West China Hosp, Dept Cardiol, Chengdu, Peoples R China
基金
中国国家自然科学基金;
关键词
cardiac hypertrophy; cardiac fibrosis; inflammation; circRNA; ceRNA; HEART; EXPRESSION; INHIBITION; MECHANISMS; MICRORNAS; LANDSCAPE; PROTECTS; MIRNAS; GROWTH;
D O I
10.3389/fphar.2022.940768
中图分类号
R9 [药学];
学科分类号
1007 ;
摘要
Cardiac hypertrophy initially serves as an adaptive response to physiological and pathological stimuli. Sustained hypertrophy progress to pathological cardiac hypertrophy, cardiac fibrosis and ultimately lead to heart failure, one of the leading medical causes of mortality worldwide. Intervention of pathological cardiac hypertrophy can effectively reduce the occurrence of heart failure. Abundant factors, such as adrenergic, angiotensin, and endothelin (ET-1) receptors, have been shown to participate in the regulation of pathological cardiac hypertrophy. Recently, an increasing number of studies have indicated that circRNA and circRNA-miRNA-mRNA network regulation is indispensable for the posttranscriptional regulation of mRNA in cardiac hypertrophy. In our study, the morphological, cardiac function and pathological changes during cardiac hypertrophy were investigated. RNA sequencing identified 93 circRNAs that were differentially expressed in the TAC_2w group, and 55 circRNAs in the TAC_4w group compared with the sham group. Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses identified several significant pathways, including hypertrophic cardiomyopathy, extracellular matrix (ECM)-receptor interaction and focal adhesion. Coexpression analyses were performed for differentially expressed circRNAs and differentially expressed mRNAs. Based on gene set enrichment analysis (GSEA), 8 circRNAs (mmu-Nfkb1_0001, mmu-Smad4_0007, mmu-Hecw2_0009, mmu-Itgbl1_0002, mmu-Lrrc2_0005, mmu-Cpeb3_0007, mmu-Ryr2_0040, and mmu-Rtn4_0001) involved in cardiac hypertrophy and cardiac fibrosis were identified. We validated some key circRNAs by qPCR. The crucial coexpression of circRNA-mRNA and its interaction with miRNA showed the possible mechanism of circRNAs in the process of cardiac dysfunction. Our results may provide promising targets for the treatment of pathological cardiac hypertrophy and fibrosis.
引用
收藏
页数:20
相关论文
共 57 条
[1]   RNA Expression Profiling of Human iPSC-Derived Cardiomyocytes in a Cardiac Hypertrophy Model [J].
Aggarwal, Praful ;
Turner, Amy ;
Matter, Andrea ;
Kattman, Steven J. ;
Stoddard, Alexander ;
Lorier, Rachel ;
Swanson, Bradley J. ;
Arnett, Donna K. ;
Broeckel, Ulrich .
PLOS ONE, 2014, 9 (09)
[2]   The microRNA.org resource: targets and expression [J].
Betel, Doron ;
Wilson, Manda ;
Gabow, Aaron ;
Marks, Debora S. ;
Sander, Chris .
NUCLEIC ACIDS RESEARCH, 2008, 36 :D149-D153
[3]   Redox Signaling in Cardiac Physiology and Pathology [J].
Burgoyne, Joseph R. ;
Mongue-Din, Heloise ;
Eaton, Philip ;
Shah, Ajay M. .
CIRCULATION RESEARCH, 2012, 111 (08) :1091-1106
[4]   MicroRNA-133 controls cardiac hypertrophy [J].
Care, Alessandra ;
Catalucci, Daniele ;
Felicetti, Federica ;
Bonci, Desiree ;
Addario, Antonio ;
Gallo, Paolo ;
Bang, Marie-Louise ;
Segnalini, Patrizia ;
Gu, Yusu ;
Dalton, Nancy D. ;
Elia, Leonardo ;
Latronico, Michael V. G. ;
Hoydal, Morten ;
Autore, Camillo ;
Russo, Matteo A. ;
Dorn, Gerald W., II ;
Ellingsen, Oyvind ;
Ruiz-Lozano, Pilar ;
Peterson, Kirk L. ;
Croce, Carlo M. ;
Peschle, Cesare ;
Condorelli, Gianluigi .
NATURE MEDICINE, 2007, 13 (05) :613-618
[5]   The expanding regulatory mechanisms and cellular functions of circular RNAs [J].
Chen, Ling-Ling .
NATURE REVIEWS MOLECULAR CELL BIOLOGY, 2020, 21 (08) :475-490
[6]   Integrated Analysis of circRNA-miRNA-mRNA ceRNA Network in Cardiac Hypertrophy [J].
Chen, Yang-Hao ;
Zhong, Ling-Feng ;
Hong, Xia ;
Zhu, Qian-Li ;
Wang, Song-Jie ;
Han, Ji-Bo ;
Huang, Wei-Jian ;
Ye, Bo-Zhi .
FRONTIERS IN GENETICS, 2022, 13
[7]   Antisense inhibition of human miRNAs and indications for an involvement of miRNA in cell growth and apoptosis [J].
Cheng, AM ;
Byrom, MW ;
Shelton, J ;
Ford, LP .
NUCLEIC ACIDS RESEARCH, 2005, 33 (04) :1290-1297
[8]   Global targetome analysis reveals critical role of miR-29a in pancreatic stellate cell mediated regulation of PDAC tumor microenvironment [J].
Dey, Shatovisha ;
Liu, Sheng ;
Factora, Tricia D. ;
Taleb, Solaema ;
Riverahernandez, Primavera ;
Udari, Lata ;
Zhong, Xiaoling ;
Wan, Jun ;
Kota, Janaiah .
BMC CANCER, 2020, 20 (01)
[9]   Disruption of RIP1-FADD Complexes by MicroRNA-103/107 Provokes Necrotic Cardiac Cell Death [J].
Dhingra, Rimpy ;
Lin, Junjun ;
Kirshenbaum, Lorrie A. .
CIRCULATION RESEARCH, 2015, 117 (04) :314-316
[10]   Landscape of transcription in human cells [J].
Djebali, Sarah ;
Davis, Carrie A. ;
Merkel, Angelika ;
Dobin, Alex ;
Lassmann, Timo ;
Mortazavi, Ali ;
Tanzer, Andrea ;
Lagarde, Julien ;
Lin, Wei ;
Schlesinger, Felix ;
Xue, Chenghai ;
Marinov, Georgi K. ;
Khatun, Jainab ;
Williams, Brian A. ;
Zaleski, Chris ;
Rozowsky, Joel ;
Roeder, Maik ;
Kokocinski, Felix ;
Abdelhamid, Rehab F. ;
Alioto, Tyler ;
Antoshechkin, Igor ;
Baer, Michael T. ;
Bar, Nadav S. ;
Batut, Philippe ;
Bell, Kimberly ;
Bell, Ian ;
Chakrabortty, Sudipto ;
Chen, Xian ;
Chrast, Jacqueline ;
Curado, Joao ;
Derrien, Thomas ;
Drenkow, Jorg ;
Dumais, Erica ;
Dumais, Jacqueline ;
Duttagupta, Radha ;
Falconnet, Emilie ;
Fastuca, Meagan ;
Fejes-Toth, Kata ;
Ferreira, Pedro ;
Foissac, Sylvain ;
Fullwood, Melissa J. ;
Gao, Hui ;
Gonzalez, David ;
Gordon, Assaf ;
Gunawardena, Harsha ;
Howald, Cedric ;
Jha, Sonali ;
Johnson, Rory ;
Kapranov, Philipp ;
King, Brandon .
NATURE, 2012, 489 (7414) :101-108