Mean-field calculation of critical parameters and log-periodic characterization of an aperiodic-modulated model

被引:2
作者
Oliveira, T. P. [1 ]
Branco, N. S. [1 ]
机构
[1] Univ Fed Santa Catarina, Dept Fis, BR-88040900 Florianopolis, SC, Brazil
关键词
Statistical mechanics;
D O I
10.1103/PhysRevE.85.011113
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We employ a mean-field approximation to study the Ising model with aperiodic modulation of its interactions in one spatial direction. Two different values for the exchange constant, J(A) and J(B), are present, according to the Fibonacci sequence. We calculate the pseudocritical temperatures for finite systems and extrapolate them to the thermodynamic limit. We explicitly obtain the exponents beta, delta, and gamma and, from the usual scaling relations for anisotropic models at the upper critical dimension (assumed to be 4 for the model we treat), we calculate alpha, nu, nu(parallel to), eta, and eta(parallel to). Within the framework of a renormalization-group approach, the Fibonacci sequence is a marginal one and we obtain exponents that depend on the ratio r = J(B)/J(A), as expected; however, the scaling relation gamma = beta(delta - 1) is obeyed for all values of r we studied. We characterize some thermodynamic functions as log-periodic functions of their arguments, as expected for aperiodic-modulated models, and obtain precise values for the exponents from this characterization.
引用
收藏
页数:7
相关论文
共 18 条
[1]   Detailed characterization of log-periodic oscillations for an aperiodic Ising model [J].
Andrade, RFS .
PHYSICAL REVIEW E, 2000, 61 (06) :7196-7199
[2]   ANISOTROPIC SCALING IN LAYERED APERIODIC ISING SYSTEMS [J].
BERCHE, B ;
BERCHE, PE ;
HENKEL, M ;
IGLOI, F ;
LAJKO, P ;
MORGAN, S ;
TURBAN, L .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1995, 28 (05) :L165-L171
[3]   FINITE-SIZE EFFECTS AT CRITICAL-POINTS WITH ANISOTROPIC CORRELATIONS - PHENOMENOLOGICAL SCALING THEORY AND MONTE-CARLO SIMULATIONS [J].
BINDER, K ;
WANG, JS .
JOURNAL OF STATISTICAL PHYSICS, 1989, 55 (1-2) :87-126
[4]  
Callen Herbert B., 1985, Thermodynamics and an Introduction to Thermostatistics
[5]   Nonuniversal behavior for aperiodic interactions within a mean-field approximation [J].
Faria, Maicon S. ;
Branco, N. S. ;
Tragtenberg, M. H. R. .
PHYSICAL REVIEW E, 2008, 77 (04)
[6]   Influence of aperiodic modulations on first-order transitions: Numerical study of the two-dimensional Potts model [J].
Girardi, D. ;
Branco, N. S. .
PHYSICAL REVIEW E, 2011, 83 (06)
[7]   FINITE-LATTICE EXTRAPOLATION ALGORITHMS [J].
HENKEL, M ;
SCHUTZ, G .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1988, 21 (11) :2617-2633
[8]   Non-universal critical behaviour in mean-field theory of inhomogeneous systems [J].
Igloi, F ;
Palagyi, G .
PHYSICA A, 1997, 240 (3-4) :685-693
[9]   Aperiodic Ising model on the Bethe lattice:: Exact results [J].
Igloi, Ferenc ;
Turban, Loic .
PHYSICAL REVIEW E, 2008, 78 (03)
[10]  
Lindfield G., 2000, Numerical Methods Using Matlab, VSecond