Graphene Quantum Dots Open Up New Prospects for Interfacial Modifying in Graphene/Silicon Schottky Barrier Solar Cell

被引:10
作者
Geng, Chao [1 ]
Chen, Xiuhua [2 ]
Li, Shaoyuan [1 ,3 ]
Ding, Zhao [4 ]
Ma, Wenhui [1 ]
Qiu, Jiajia [1 ]
Wang, Qidi [1 ]
Yan, Chang [3 ]
Fan, Hua-jun [5 ]
机构
[1] Kunming Univ Sci & Technol, Inst New Energy, State Key Lab Complex Nonferrous Met Resources Cl, Kunming 650093, Yunnan, Peoples R China
[2] Yunnan Univ, Sch Mat Sci & Engn, Kunming 650091, Yunnan, Peoples R China
[3] Univ New South Wales, Australian Ctr Adv Photovolta, Sch Photovolta & Renewable Energy Engn, Sydney, NSW 2052, Australia
[4] IIT, Dept Mech Mat & Aerosp Engn, Chicago, IL 60616 USA
[5] Sichuan Univ Sci & Engn, Coll Chem Engn, Zigong 643000, Sichuan, Peoples R China
来源
ENERGY MATERIAL ADVANCES | 2021年 / 2021卷
基金
国家重点研发计划; 中国国家自然科学基金;
关键词
HIGH-PERFORMANCE; EFFICIENCY; JUNCTION; OXIDE; NANOPARTICLES; LAYER; FILMS;
D O I
10.34133/2021/8481915
中图分类号
O59 [应用物理学];
学科分类号
摘要
Graphene/silicon (Gr/Si) Schottky barrier solar cells (SBSCs) are attractive for harvesting solar energy and have been gaining grounds for its low-cost solution-processing. The interfacial barrier between graphene and silicon facilitates the reducing excessive carrier recombination while accelerating the separation processes of photo-generated carriers at the interface, which empowers the performance of Gr/Si SBSCs. However, the difficulty to control the interface thickness prevents its application. Here, we introduce the graphene oxide quantum dots (GOQDs) as a unique interfacial modulation species with tunable thickness by controlling the GOQDs particle size. The power conversion efficiency (PCE) of 13.67% for Gr/Si-based SBSC with outstanding stability in the air is obtained with the optimal barrier thickness (26 nm) and particle size (4.15 nm) of GOQDs. The GOQDs in Gr/Si-based SBSCs provide the extra band bending which further enhances the PCE for its photovoltaic applications.
引用
收藏
页数:11
相关论文
共 52 条
[1]   Tunable Graphene-Silicon Heterojunctions for Ultrasensitive Photodetection [J].
An, Xiaohong ;
Liu, Fangze ;
Jung, Yung Joon ;
Kar, Swastik .
NANO LETTERS, 2013, 13 (03) :909-916
[2]  
[Anonymous], 2019, Global Energy Transformation: A Roadmap to 2050
[3]   Photoresponsivity of silver nanoparticles decorated graphene-silicon Schottky junction [J].
Ayhan, Muhammed Emre ;
Kalita, Golap ;
Kondo, Masaharu ;
Tanemura, Masaki .
RSC ADVANCES, 2014, 4 (51) :26866-26871
[4]  
Bae S, 2010, NAT NANOTECHNOL, V5, P574, DOI [10.1038/NNANO.2010.132, 10.1038/nnano.2010.132]
[5]   Graphene-semiconductor heterojunction sheds light on emerging photovoltaics [J].
Behura, Sanjay K. ;
Wang, Chen ;
Wen, Yu ;
Berry, Vikas .
NATURE PHOTONICS, 2019, 13 (05) :312-318
[6]   STUDIES OF TUNNEL MOS DIODES .1. INTERFACE EFFECTS IN SILICON SCHOTTKY DIODES [J].
CARD, HC ;
RHODERICK, EH .
JOURNAL OF PHYSICS D-APPLIED PHYSICS, 1971, 4 (10) :1589-+
[7]   Grain Engineering for Perovskite/Silicon Monolithic Tandem Solar Cells with Efficiency of 25.4% [J].
Chen, Bo ;
Yu, Zhengshan ;
Liu, Kong ;
Zheng, Xiaopeng ;
Liu, Ye ;
Shi, Jianwei ;
Spronk, Derrek ;
Rudd, Peter N. ;
Holman, Zachary ;
Huang, Jinsong .
JOULE, 2019, 3 (01) :177-190
[8]   Graphene-Silicon Schottky Diodes [J].
Chen, Chun-Chung ;
Aykol, Mehmet ;
Chang, Chia-Chi ;
Levi, A. F. J. ;
Cronin, Stephen B. .
NANO LETTERS, 2011, 11 (05) :1863-1867
[9]   EXTRACTION OF SCHOTTKY DIODE PARAMETERS FROM FORWARD CURRENT-VOLTAGE CHARACTERISTICS [J].
CHEUNG, SK ;
CHEUNG, NW .
APPLIED PHYSICS LETTERS, 1986, 49 (02) :85-87
[10]   12.35% efficient graphene quantum dots/silicon heterojunction solar cells using graphene transparent electrode [J].
Diao, Senlin ;
Zhang, Xiujuan ;
Shao, Zhibin ;
Ding, Ke ;
Jie, Jiansheng ;
Zhang, Xiaohong .
NANO ENERGY, 2017, 31 :359-366