Finite-size effects in a stochastic Kuramoto model

被引:18
|
作者
Gottwald, Georg A. [1 ]
机构
[1] Univ Sydney, Sch Math & Stat, Sydney, NSW 2006, Australia
关键词
LONG-TIME DYNAMICS; SYNCHRONIZATION; WAVES; NOISE;
D O I
10.1063/1.5004618
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We present a collective coordinate approach to study the collective behaviour of a finite ensemble of N stochastic Kuramoto oscillators using two degrees of freedom: one describing the shape dynamics of the oscillators and one describing their mean phase. Contrary to the thermodynamic limit N -> infinity in which the mean phase of the cluster of globally synchronized oscillators is constant in time, the mean phase of a finite-size cluster experiences Brownian diffusion with a variance proportional to 1/N. This finite-size effect is quantitatively well captured by our collective coordinate approach. Published by AIP Publishing.
引用
收藏
页数:6
相关论文
共 50 条
  • [21] Finite-size effects in microrheology
    Santamaria-Holek, I.
    Rubi, J. M.
    JOURNAL OF CHEMICAL PHYSICS, 2006, 125 (06):
  • [22] FINITE-SIZE EFFECTS IN A SANDPILE
    LIU, CH
    JAEGER, HM
    NAGEL, SR
    PHYSICAL REVIEW A, 1991, 43 (12): : 7091 - 7092
  • [23] FINITE-SIZE EFFECTS ON MULTIFRACTALS
    KAUFMANN, Z
    PHYSICAL REVIEW A, 1991, 44 (10): : 6923 - 6925
  • [24] FINITE-SIZE CORE EFFECTS IN THE CALLAN-RUBAKOV MODEL
    GOLDSTEIN, W
    SOLDATE, M
    PHYSICS LETTERS B, 1984, 139 (5-6) : 382 - 388
  • [25] Finite-size effects in the Nagel-Schreckenberg traffic model
    Balouchi, Ashkan
    Browne, Dana A.
    PHYSICAL REVIEW E, 2016, 93 (05)
  • [26] Finite-size effects on the phase diagram of the thermodynamical cluster model
    Mallik, S.
    Gulminelli, F.
    Chaudhuri, G.
    PHYSICAL REVIEW C, 2015, 92 (06):
  • [27] Finite-Size Effects of the One-Dimensional Ising Model
    Ferreira, L. S.
    Plascak, J. A.
    BRAZILIAN JOURNAL OF PHYSICS, 2023, 53 (03)
  • [28] Noise effects in a finite-size Ising-like model
    Gudyma, Iurii
    Maksymov, Artur
    Miyashita, Seiji
    PHYSICAL REVIEW E, 2011, 84 (03):
  • [29] Non-Local Finite-Size Effects in the Dimer Model
    Izmailian, Nickolay Sh.
    Priezzhev, Vyatcheslav B.
    Ruelle, Philippe
    SYMMETRY INTEGRABILITY AND GEOMETRY-METHODS AND APPLICATIONS, 2007, 3
  • [30] Finite-Size Effects for the Potts Model with Weak Boundary Conditions
    C. Borgs
    R. Kotecký
    I. Medved'
    Journal of Statistical Physics, 2002, 109 : 67 - 131