Improving long QT syndrome diagnosis by a polynomial-based T-wave morphology characterization

被引:26
作者
Hermans, Ben J. M. [1 ,2 ]
Bennis, Frank C. [1 ,3 ]
Vink, Arja S. [4 ,5 ]
Koopsen, Tijmen [1 ,2 ]
Lyon, Aurore [1 ,2 ]
Wilde, Arthur A. M. [4 ]
Nuyens, Dieter [6 ]
Robyns, Tomas [7 ]
Pison, Laurent [6 ]
Postema, Pieter G. [4 ]
Delhaas, Tammo [1 ,2 ]
机构
[1] Maastricht Univ, Dept Biomed Engn, POB 616, NL-6200 MD Maastricht, Netherlands
[2] Maastricht Univ, Cardiovasc Res Inst Maastricht Car, Maastricht, Netherlands
[3] Maastricht Univ, MHeNS Sch Mental Hlth & Neurosci, Maastricht, Netherlands
[4] Univ Amsterdam, Heart Ctr, Dept Clin & Expt Cardiol, Amsterdam UMC, Amsterdam, Netherlands
[5] Univ Amsterdam, Emma Childrens Hosp, Dept Pediat Cardiol, Amsterdam UMC, Amsterdam, Netherlands
[6] Ziekenhuis Oost Limburg, Dept Cardiol, Genk, Belgium
[7] Univ Hosp Leuven, Dept Cardiovasc Dis, Leuven, Belgium
关键词
Diagnosis; LQTS; Machine learning; QT; T-wave morphology; INTERVAL; FORMS;
D O I
10.1016/j.hrthm.2019.12.020
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
BACKGROUND Diagnosing long QT syndrome (LQTS) remains challenging because of a considerable overlap in QT interval between patients with LQTS and healthy subjects. Characterizing T-wave morphology might improve LQTS diagnosis. OBJECTIVE The purpose of this study was to improve LQTS diagnosis by combining new polynomial-based T-wave morphology parameters with the corrected QT interval (QTc), age, and sex in a model. METHODS A retrospective cohort consisting of 333 patients with LQTS and 345 genotype-negative family members was used in this study. For each patient, a linear combination of the first 2 Hermite-Gauss (HG) polynomials was fitted to the STT segments of an average complex of all precordial leads and limb leads I and II. The weight coefficients as well as the error of the best fit were used to characterize T-wave morphology. Subjects were classified as patients with LQTS or controls by clinical QTc cutoffs and 3 support vector machine models fed with different features. An external cohort consisting of 72 patients and 45 controls was finally used to check the robustness of the models. RESULTS Baseline QTc cutoffs were specific but had low sensitivity in diagnosing LQTS. The model with T-wave morphology features, QTc, age, and sex had the best overall accuracy (84%), followed by a model with QTc, age, and sex (79%). The model with T-wave morphology features especially performed better in LQTS type 3 patients (69%). CONCLUSION T-wave morphologies can be characterized by fitting a linear combination of the first 2 Hermite-Gauss polynomials. Adding T-wave morphology characterization to age, sex, and QTc in a support vector machine model improves LQTS diagnosis.
引用
收藏
页码:752 / 758
页数:7
相关论文
共 33 条
  • [1] The phenomenon of "QT stunning": The abnormal QT prolongation provoked by standing persists even as the heart rate returns to normal in patients with long QT syndrome
    Adler, Arnon
    van der Werf, Christian
    Postema, Pieter G.
    Rosso, Raphael
    Bhuiyan, Zahir A.
    Kalman, Jonathan M.
    Vohra, Jitendra K.
    Guevara-Valdivia, Milton E.
    Marquez, Manlio F.
    Halkin, Amir
    Benhorin, Jesaia
    Antzelevitch, Charles
    Wilde, Arthur A. M.
    Viskin, Sami
    [J]. HEART RHYTHM, 2012, 9 (06) : 901 - 908
  • [2] A Robust Method for Quantification of IKr-Related T-Wave Morphology Abnormalities
    Andersen, M. P.
    Xue, J. Q.
    Graff, C.
    Hardahl, T. B.
    Toft, E.
    Kanters, J. K.
    Christiansen, M.
    Jensen, H. K.
    Struijk, J. J.
    [J]. COMPUTERS IN CARDIOLOGY 2007, VOL 34, 2007, 34 : 341 - +
  • [3] Bazett HC, 1920, HEART-J STUD CIRC, V7, P353
  • [4] Diagnostic value of T-wave morphology changes during "QT stretching" in patients with long QT syndrome
    Chorin, Ehud
    Havakuk, Ofer
    Adler, Arnon
    Steinvil, Arie
    Rozovski, Uri
    van der Werf, Christian
    Postema, Pieter G.
    Topaz, Guy
    Wilde, Arthur A. M.
    Viskin, Sami
    Rosso, Raphael
    [J]. HEART RHYTHM, 2015, 12 (11) : 2263 - 2271
  • [5] The common long-QT syndrome mutation KCNQ1/A341V causes unusually severe clinical manifestations in patients with different ethnic backgrounds:: Toward a mutation-specific risk stratification
    Crotti, Lia
    Spazzolini, Carla
    Schwartz, Peter J.
    Shimizu, Wataru
    Denjoy, Isabelle
    Schulze-Bahr, Eric
    Zaklyazminskaya, Elena V.
    Swan, Heikki
    Ackerman, Michael J.
    Moss, Arthur J.
    Wilde, Arthur A. M.
    Horie, Minoru
    Brink, Paul A.
    Insolia, Roberto
    De Ferrari, Gaetano M.
    Crimi, Gabriele
    [J]. CIRCULATION, 2007, 116 (21) : 2366 - 2375
  • [6] COMPARING THE AREAS UNDER 2 OR MORE CORRELATED RECEIVER OPERATING CHARACTERISTIC CURVES - A NONPARAMETRIC APPROACH
    DELONG, ER
    DELONG, DM
    CLARKEPEARSON, DI
    [J]. BIOMETRICS, 1988, 44 (03) : 837 - 845
  • [7] Classification and Reporting of Potentially Proarrhythmic Common Genetic Variation in Long QT Syndrome Genetic Testing
    Giudicessi, John R.
    Roden, Dan M.
    Wilde, Arthur A. M.
    Ackerman, Michael J.
    [J]. CIRCULATION, 2018, 137 (06) : 619 - 630
  • [8] Support vector machine-based assessment of the T-wave morphology improves long QT syndrome diagnosis
    Hermans, Ben J. M.
    Stoks, Job
    Bennis, Frank C.
    Vink, Arja S.
    Garde, Ainara
    Wilde, Arthur A. M.
    Pison, Laurent
    Postema, Pieter G.
    Delhaas, Tammo
    [J]. EUROPACE, 2018, 20 : 113 - 119
  • [9] The development and validation of an easy to use automatic QT-interval algorithm
    Hermans, Ben J. M.
    Vink, Arja S.
    Bennis, Frank C.
    Filippini, Luc H.
    Meijborg, Veronique M. F.
    Wilde, Arthur A. M.
    Pison, Laurent
    Postema, Pieter G.
    Delhaas, Tammo
    [J]. PLOS ONE, 2017, 12 (09):
  • [10] Hofman N, 2007, EUR HEART J, V28, P575, DOI 10.1093/eurheartj/ehl355