A variational approach to the quaternionic Monge-Ampere equation

被引:5
作者
Wan, Dongrui [1 ]
机构
[1] Shenzhen Univ, Coll Math & Stat, Room 312 Sci & Technol Bldg, Shenzhen 518060, Peoples R China
关键词
Variational approach; Monge-Ampere equation; Quaternionic plurisubharmonic function; CAUCHY-FUETER COMPLEX; PLURISUBHARMONIC-FUNCTIONS; HARTOGS PHENOMENON; DIRICHLET PROBLEM; OPERATOR; PRINCIPLE; DEFINITION; MANIFOLDS; FORMULA;
D O I
10.1007/s10231-020-00960-z
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we use the variational method to solve the quaternionic Monge-Ampere equation when the right-hand side is a positive measure of finite energy. We introduce finite energy classes of quaternionic plurisubharmonic functions of Cegrell type and define the quaternionic Monge-Ampere operator on some Cegrell's classes, the functions of which are not necessarily bounded. By using the theory of quaternionic closed positive current, we show that integration by parts and comparison principle are valid on some classes. This opens the door to prove results in the quaternionic pluripotential theory as in the seminal framework by Cegrell (Acta Math 180(2):187-217, 1998; Ann Inst Fourier (Grenoble) 54(1):159-179, 2004; Ann Polon Math 94(2):131-147, 2008) for the complex Monge-Ampere case.
引用
收藏
页码:2125 / 2150
页数:26
相关论文
共 38 条
[1]   Partial pluricomplex energy and integrability exponents of plurisubharmonic functions [J].
Ahag, P. ;
Cegrell, U. ;
Kolodziej, S. ;
Pham, H. H. ;
Zeriahi, A. .
ADVANCES IN MATHEMATICS, 2009, 222 (06) :2036-2058
[2]  
Ahag P, 2012, MATH SCAND, V110, P235
[3]   Non-commutative linear algebra and plurisubharmonic functions of quaternionic variables [J].
Alesker, S .
BULLETIN DES SCIENCES MATHEMATIQUES, 2003, 127 (01) :1-35
[4]   Quaternionic Monge-AmpSre equation and Calabi problem for HKT-manifolds [J].
Alesker, S. ;
Verbitsky, M. .
ISRAEL JOURNAL OF MATHEMATICS, 2010, 176 (01) :109-138
[5]  
ALESKER S, 2003, J GEOM ANAL, V13
[6]   Plurisubharmonic functions on hypercomplex manifolds and HKT-geometry [J].
Alesker, Semyon ;
Verbitsky, Misha .
JOURNAL OF GEOMETRIC ANALYSIS, 2006, 16 (03) :375-399
[7]   ON A UNIFORM ESTIMATE FOR THE QUATERNIONIC CALABI PROBLEM [J].
Alesker, Semyon ;
Shelukhin, Egor .
ISRAEL JOURNAL OF MATHEMATICS, 2013, 197 (01) :309-327
[8]   Solvability of the quaternionic Monge-Ampere equation on compact manifolds with a flat hyperKahler metric [J].
Alesker, Semyon .
ADVANCES IN MATHEMATICS, 2013, 241 :192-219
[9]   Pluripotential theory on quaternionic manifolds [J].
Alesker, Semyon .
JOURNAL OF GEOMETRY AND PHYSICS, 2012, 62 (05) :1189-1206
[10]   DIRICHLET PROBLEM FOR A COMPLEX MONGE-AMPERE EQUATION [J].
BEDFORD, E ;
TAYLOR, BA .
INVENTIONES MATHEMATICAE, 1976, 37 (01) :1-44