Characterization of the complete chloroplast genome of Euphorbia pekinensis Rupr. (Euphorbiaceae)

被引:3
作者
Wang, Yu-Liang [1 ]
Jian, Xing [2 ]
Wang, Song [1 ]
机构
[1] Anhui Sci & Technol Univ, Coll Life & Hlth Sci, Bengbu, Peoples R China
[2] Anhui Sci & Technol Univ, Coll Architecture, Bengbu, Peoples R China
来源
MITOCHONDRIAL DNA PART B-RESOURCES | 2022年 / 7卷 / 08期
关键词
Euphorbia pekinensis; Euphorbiaceae; chloroplast genome; phylogeny;
D O I
10.1080/23802359.2022.2111978
中图分类号
Q3 [遗传学];
学科分类号
071007 ; 090102 ;
摘要
Euphorbia pekinensis Rupr. 1859 is a medicinal herb endemic to China and distributed throughout the country, particularly across the northern part of the mainland. However, the systematic classification of Euphorbiaceae remains controversial. Therefore, studying the chloroplast genome of E. pekinensis is crucial for the resolution of this taxonomic dispute, clarification of the systematic status of Euphorbia, and establishment of an accurate classification system for Euphorbiaceae. In this study, we sequenced the complete chloroplast genome of E. pekinensis using Illumina sequencing technology and annotated it using GeSeq. The complete chloroplast genome was 162,002-bp-long with a guanine-cytosine (GC) content of 35.7%. It included one large single-copy (LSC), one small single-copy (SSC), and two inverted repeat sequence regions (IRa and IRb), which were 90,225 bp, 18,067 bp, and 26,855 bp in length, respectively, and are indicative of a typical tetrad structure. The genome encoded 129 functional genes, comprising 85 protein-coding genes, 36 tRNA genes, and eight rRNA genes. According to the maximum-likelihood phylogenetic tree that was constructed using 16 complete chloroplast genomes, E. pekinensis was found to be closely related to E. ebracteolata. Therefore, the complete chloroplast genome of E. pekinensis provides a better understanding of Euphorbia genetics.
引用
收藏
页码:1550 / 1552
页数:3
相关论文
共 10 条
  • [1] Byng JW, 2016, BOT J LINN SOC, V181, P1, DOI [10.1111/boj.12385, 10.1111/j.1095-8339.2009.00996.x]
  • [2] Doyle JJ., 1987, PHYTOCHEM B, V19, P11, DOI DOI 10.2307/4119796
  • [3] OrganellarGenomeDRAW (OGDRAW) version 1.3.1: expanded toolkit for the graphical visualization of organellar genomes
    Greiner, Stephan
    Lehwark, Pascal
    Bock, Ralph
    [J]. NUCLEIC ACIDS RESEARCH, 2019, 47 (W1) : W59 - W64
  • [4] GetOrganelle: a fast and versatile toolkit for accurate de novo assembly of organelle genomes
    Jin, Jian-Jun
    Yu, Wen-Bin
    Yang, Jun-Bo
    Song, Yu
    dePamphilis, Claude W.
    Yi, Ting-Shuang
    Li, De-Zhu
    [J]. GENOME BIOLOGY, 2020, 21 (01)
  • [5] IQ-TREE 2: New Models and Efficient Methods for Phylogenetic Inference in the Genomic Era
    Minh, Bui Quang
    Schmidt, Heiko A.
    Chernomor, Olga
    Schrempf, Dominik
    Woodhams, Michael D.
    von Haeseler, Arndt
    Lanfear, Robert
    [J]. MOLECULAR BIOLOGY AND EVOLUTION, 2020, 37 (05) : 1530 - 1534
  • [6] Shen GM, 1998, ARID ZONE RES, V15, P1
  • [7] Phylogenetic relationships in Euphorbieae (Euphorbiaceae) based on its and ndhF sequence data
    Steinmann, VW
    Porter, JM
    [J]. ANNALS OF THE MISSOURI BOTANICAL GARDEN, 2002, 89 (04) : 453 - 490
  • [8] GeSeq - versatile and accurate annotation of organelle genomes
    Tillich, Michael
    Lehwark, Pascal
    Pellizzer, Tommaso
    Ulbricht-Jones, Elena S.
    Fischer, Axel
    Bock, Ralph
    Greiner, Stephan
    [J]. NUCLEIC ACIDS RESEARCH, 2017, 45 (W1) : W6 - W11
  • [9] Wick Ryan R, 2015, Bioinformatics, V31, P3350, DOI 10.1093/bioinformatics/btv383
  • [10] Zhang Fenyao, 2020, Journal of Zhejiang University (Science Edition), V47, P743, DOI 10.3785/j.issn.1008-9497.2020.06.012