Minimal linear codes constructed from functions

被引:6
作者
Wu, Xia [1 ]
Lu, Wei [1 ]
Cao, Xiwang [2 ]
机构
[1] Southeast Univ, Sch Math, Nanjing 210096, Peoples R China
[2] Nanjing Univ Aeronaut & Astronaut, Dept Math, Nanjing 211100, Peoples R China
来源
CRYPTOGRAPHY AND COMMUNICATIONS-DISCRETE-STRUCTURES BOOLEAN FUNCTIONS AND SEQUENCES | 2022年 / 14卷 / 04期
关键词
Linear code; Minimal code; q-ary function; Maiorana-McFarland functions; Secret sharing; 2-WEIGHT; FAMILIES; WEIGHTS;
D O I
10.1007/s12095-021-00553-4
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
In this paper, we consider minimal linear codes by a general construction of linear codes from q-ary functions. First, we give necessary and sufficient conditions for codewords which are constructed by functions to be minimal. Second, as applications, we present three constructions of minimal linear codes. Constructions on minimal linear codes in this paper generalize some recent results in Ding et al. (IEEE Trans. Inf. Theory 64(10), 6536-6545, 2018); Heng et al. (Finite Fields Appl. 54, 176-196, 2018); Bartoli and Bonini (IEEE Trans. Inf. Theory 65(7), 4152-4155, 2019); Mesnager et al. (IEEE Trans. Inf. Theory 66(9), 5404-5413, 2020); Bonini and Borello (J. Algebraic Comb. 53, 327-341, 2021). In our three constructions, the conditions of functions are much looser than theirs.
引用
收藏
页码:875 / 895
页数:21
相关论文
共 38 条
[1]   A GEOMETRIC CHARACTERIZATION OF MINIMAL CODES AND THEIR ASYMPTOTIC PERFORMANCE [J].
Alfarano, Gianira N. ;
Borello, Martino ;
Neri, Alessandro .
ADVANCES IN MATHEMATICS OF COMMUNICATIONS, 2022, 16 (01) :115-133
[2]  
Ashikhmin A, 1995, LECT NOTES COMPUT SC, V948, P96
[3]   Minimal vectors in linear codes [J].
Ashikhmin, A ;
Barg, A .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1998, 44 (05) :2010-2017
[4]   Minimal Linear Codes in Odd Characteristic [J].
Bartoli, Daniele ;
Bonini, Matteo .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2019, 65 (07) :4152-4155
[5]   INHERENT INTRACTABILITY OF CERTAIN CODING PROBLEMS [J].
BERLEKAMP, ER ;
MCELIECE, RJ ;
VANTILBORG, HCA .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1978, 24 (03) :384-386
[6]   Minimal linear codes arising from blocking sets [J].
Bonini, Matteo ;
Borello, Martino .
JOURNAL OF ALGEBRAIC COMBINATORICS, 2021, 53 (02) :327-341
[7]   THE HARDNESS OF DECODING LINEAR CODES WITH PREPROCESSING [J].
BRUCK, J ;
NAOR, M .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1990, 36 (02) :381-385
[8]   Linear codes from perfect nonlinear mappings and their secret sharing schemes [J].
Carlet, C ;
Ding, CS ;
Yuan, J .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2005, 51 (06) :2089-2102
[9]   Towards Secure Two-Party Computation from the Wire-Tap Channel [J].
Chabanne, Herve ;
Cohen, Gerard ;
Patey, Alain .
INFORMATION SECURITY AND CRYPTOLOGY - ICISC 2013, 2014, 8565 :34-46
[10]  
Cohen G.D., 2003, LECT NOTES COMPUTER, V8308, P85