SOLAR ERUPTION AND LOCAL MAGNETIC PARAMETERS

被引:2
作者
Lee, Jeongwoo [1 ,2 ]
Liu, Chang [3 ]
Jing, Ju [3 ]
Chae, Jongchul [1 ]
机构
[1] Seoul Natl Univ, Dept Phys & Astron, Seoul 08826, South Korea
[2] Nagoya Univ, Inst Space Earth Environm Res, Nagoya, Aichi 4648601, Japan
[3] New Jersey Inst Technol, Space Weather Res Lab, Newark, NJ 07102 USA
基金
新加坡国家研究基金会;
关键词
instabilities; magnetic fields; Sun: activity; Sun:; filaments; prominences; Sun: flares; CORONAL MASS EJECTIONS; DECAY INDEX; FLARES; FORCE;
D O I
10.3847/2041-8205/831/2/L18
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
It is now a common practice to use local magnetic parameters such as magnetic decay index for explaining solar eruptions from active regions, but there can be an alternative view that the global properties of the source region should be counted as a more important factor. We discuss this issue based on Solar Dynamics Observatory observations of the three successive eruptions within 1.5 hr from the NOAA active region 11444 and the magnetic parameters calculated using the nonlinear force-free field model. Two violent eruptions occurred in the regions with relatively high magnetic twist number (0.5-1.5) and high decay index (0.9-1.1) at the nominal height of the filament (12 '') and otherwise a mild eruption occurred, which supports the local-parameter paradigm. Our main point is that the time sequence of the eruptions did not go with these parameters. It is argued that an additional factor, in the form of stabilizing force, should operate to determine the onset of the first eruption and temporal behaviors of subsequent eruptions. As supporting evidence, we report that the heating and fast plasma flow continuing for a timescale of an hour was the direct cause for the first eruption and that the unidirectional propagation of the disturbance determined the timing of subsequent eruptions. Both of these factors are associated with the overall magnetic structure rather than local magnetic properties of the active region.
引用
收藏
页数:7
相关论文
共 26 条
[1]  
Bateman G., 1978, MHD Instabilities
[2]   The writhe of open and closed curves [J].
Berger, Mitchell A. ;
Prior, Chris .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2006, 39 (26) :8321-8348
[3]   An emerging flux trigger mechanism for coronal mass ejections [J].
Chen, PF ;
Shibata, K .
ASTROPHYSICAL JOURNAL, 2000, 545 (01) :524-531
[4]   CRITERIA FOR FLUX ROPE ERUPTION: NON-EQUILIBRIUM VERSUS TORUS INSTABILITY [J].
Demoulin, P. ;
Aulanier, G. .
ASTROPHYSICAL JOURNAL, 2010, 718 (02) :1388-1399
[5]   A CRITICAL ASSESSMENT OF NONLINEAR FORCE-FREE FIELD MODELING OF THE SOLAR CORONA FOR ACTIVE REGION 10953 [J].
DeRosa, Marc L. ;
Schrijver, Carolus J. ;
Barnes, Graham ;
Leka, K. D. ;
Lites, Bruce W. ;
Aschwanden, Markus J. ;
Amari, Tahar ;
Canou, Aurelien ;
McTiernan, James M. ;
Regnier, Stephane ;
Thalmann, Julia K. ;
Valori, Gherardo ;
Wheatland, Michael S. ;
Wiegelmann, Thomas ;
Cheung, Mark C. M. ;
Conlon, Paul A. ;
Fuhrmann, Marcel ;
Inhester, Bernd ;
Tadesse, Tilaye .
ASTROPHYSICAL JOURNAL, 2009, 696 (02) :1780-1791
[6]   ON THE ERUPTION OF CORONAL FLUX ROPES [J].
Fan, Y. .
ASTROPHYSICAL JOURNAL, 2010, 719 (01) :728-736
[7]   A review on the genesis of coronal mass ejections [J].
Forbes, TG .
JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS, 2000, 105 (A10) :23153-23165
[8]   FINITE-RESISTIVITY INSTABILITIES OF A SHEET PINCH [J].
FURTH, HP ;
KILLEEN, J ;
ROSENBLUTH, MN .
PHYSICS OF FLUIDS, 1963, 6 (04) :459-484
[9]   Reconnection of a Kinking Flux Rope Triggering the Ejection of a Microwave and Hard X-Ray Source II. Numerical Modeling [J].
Kliem, B. ;
Linton, M. G. ;
Toeroek, T. ;
Karlicky, M. .
SOLAR PHYSICS, 2010, 266 (01) :91-107
[10]   MAGNETIC FIELD STRUCTURES TRIGGERING SOLAR FLARES AND CORONAL MASS EJECTIONS [J].
Kusano, K. ;
Bamba, Y. ;
Yamamoto, T. T. ;
Iida, Y. ;
Toriumi, S. ;
Asai, A. .
ASTROPHYSICAL JOURNAL, 2012, 760 (01)