Random Forest-Based Manifold Learning for Classification of Imaging Data in Dementia

被引:0
作者
Gray, Katherine R. [1 ]
Aljabar, Paul [1 ]
Heckemann, Rolf A. [2 ,3 ]
Hammers, Alexander [2 ,3 ]
Rueckert, Daniel [1 ]
机构
[1] Imperial Coll London, Dept Comp, London, England
[2] CERMEP Image Vivant, Fondat Neuro, Lyon, France
[3] Imperial Coll London, Fac Med, London, England
来源
MACHINE LEARNING IN MEDICAL IMAGING | 2011年 / 7009卷
关键词
ALZHEIMER-DISEASE;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Neurodegenerative disorders are characterized by changes in multiple biomarkers, which may provide complementary information for diagnosis and prognosis. We present a framework in which proximities derived from random forests are used to learn a low-dimensional manifold from labelled training data and then to infer the clinical labels of test data mapped to this space. The proposed method facilitates the combination of embeddings from multiple datasets, resulting in the generation of a joint embedding that simultaneously encodes information about all the available features. It is possible to combine different types of data without additional processing, and we demonstrate this key feature by application to voxel-based FDG-PET and region-based MR imaging data from the ADNI study. Classification based on the joint embedding coordinates out-performs classification based on either modality alone. Results are impressive compared with other state-of-the-art machine learning techniques applied to multi-modality imaging data.
引用
收藏
页码:159 / +
页数:3
相关论文
共 22 条
[11]  
Hastie T., 2009, ELEMENTS STAT LEARNI, DOI 10.1007/978-0-387-84858-7
[12]   Automatic morphometry in Alzheimer's disease and mild cognitive impairment [J].
Heckemann, Rolf A. ;
Keihaninejad, Shiva ;
Aljabar, Paul ;
Gray, Katherine R. ;
Nielsen, Casper ;
Rueckert, Daniel ;
Hajnal, Joseph V. ;
Hammers, Alexander .
NEUROIMAGE, 2011, 56 (04) :2024-2037
[13]   Improving intersubject image registration using tissue-class information benefits robustness and accuracy of multi-atlas based anatomical segmentation [J].
Heckemann, Rolf A. ;
Keihaninejad, Shiva ;
Aljabar, Paul ;
Rueckert, Daniel ;
Hajnal, Joseph V. ;
Hammers, Alexander .
NEUROIMAGE, 2010, 51 (01) :221-227
[14]   Predictive markers for AD in a multi-modality framework: An analysis of MCI progression in the ADNI population [J].
Hinrichs, Chris ;
Singh, Vikas ;
Xu, Guofan ;
Johnson, Sterling C. .
NEUROIMAGE, 2011, 55 (02) :574-589
[15]   Reducing between scanner differences in multi-center PET studies [J].
Joshi, Aniket ;
Koeppe, Robert A. ;
Fessler, Jeffrey A. .
NEUROIMAGE, 2009, 46 (01) :154-159
[16]   Alzheimer disease: Operating characteristics of PET - A meta-analysis [J].
Patwardhan, MB ;
McCrory, DC ;
Matchar, DB ;
Samsa, GP ;
Rutschmann, OT .
RADIOLOGY, 2004, 231 (01) :73-80
[17]   Clinical criteria for the diagnosis of Alzheimer disease: Still good after all these years [J].
Ranginwala, Najeeb A. ;
Hynan, Linda S. ;
Weiner, Myron F. ;
White, Charles L., III .
AMERICAN JOURNAL OF GERIATRIC PSYCHIATRY, 2008, 16 (05) :384-388
[18]   Unsupervised learning with random forest predictors [J].
Shi, T ;
Horvath, S .
JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS, 2006, 15 (01) :118-138
[19]   A global geometric framework for nonlinear dimensionality reduction [J].
Tenenbaum, JB ;
de Silva, V ;
Langford, JC .
SCIENCE, 2000, 290 (5500) :2319-+
[20]  
Wachinger C, 2010, LECT NOTES COMPUT SC, V6362, P26