Random Forest-Based Manifold Learning for Classification of Imaging Data in Dementia

被引:0
作者
Gray, Katherine R. [1 ]
Aljabar, Paul [1 ]
Heckemann, Rolf A. [2 ,3 ]
Hammers, Alexander [2 ,3 ]
Rueckert, Daniel [1 ]
机构
[1] Imperial Coll London, Dept Comp, London, England
[2] CERMEP Image Vivant, Fondat Neuro, Lyon, France
[3] Imperial Coll London, Fac Med, London, England
来源
MACHINE LEARNING IN MEDICAL IMAGING | 2011年 / 7009卷
关键词
ALZHEIMER-DISEASE;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Neurodegenerative disorders are characterized by changes in multiple biomarkers, which may provide complementary information for diagnosis and prognosis. We present a framework in which proximities derived from random forests are used to learn a low-dimensional manifold from labelled training data and then to infer the clinical labels of test data mapped to this space. The proposed method facilitates the combination of embeddings from multiple datasets, resulting in the generation of a joint embedding that simultaneously encodes information about all the available features. It is possible to combine different types of data without additional processing, and we demonstrate this key feature by application to voxel-based FDG-PET and region-based MR imaging data from the ADNI study. Classification based on the joint embedding coordinates out-performs classification based on either modality alone. Results are impressive compared with other state-of-the-art machine learning techniques applied to multi-modality imaging data.
引用
收藏
页码:159 / +
页数:3
相关论文
共 22 条
  • [1] Aljabar P, 2010, LECT NOTES COMPUT SC, V6363, P1
  • [2] Automated morphological analysis of magnetic resonance brain imaging using spectral analysis
    Aljabar, P.
    Rueckert, D.
    Crum, W. R.
    [J]. NEUROIMAGE, 2008, 43 (02) : 225 - 235
  • [3] Laplacian eigenmaps for dimensionality reduction and data representation
    Belkin, M
    Niyogi, P
    [J]. NEURAL COMPUTATION, 2003, 15 (06) : 1373 - 1396
  • [4] SmcHD1, containing a structural-maintenance-of-chromosomes hinge domain, has a critical role in X inactivation
    Blewitt, Marnie E.
    Gendrel, Anne-Valerie
    Pang, Zhenyi
    Sparrow, Duncan B.
    Whitelaw, Nadia
    Craig, Jeffrey M.
    Apedaile, Anwyn
    Hilton, Douglas J.
    Dunwoodie, Sally L.
    Brockdorff, Neil
    Kay, Graham F.
    Whitelaw, Emma
    [J]. NATURE GENETICS, 2008, 40 (05) : 663 - 669
  • [5] Random forests
    Breiman, L
    [J]. MACHINE LEARNING, 2001, 45 (01) : 5 - 32
  • [6] Comparison of phantom and registration scaling corrections using the ADNI cohort
    Clarkson, Matthew J.
    Ourselin, Sebastien
    Nielsen, Casper
    Leung, Kelvin K.
    Barnes, Josephine
    Whitwell, Jennifer L.
    Gunter, Jeffrey L.
    Hill, Derek L. G.
    Weiner, Michael W.
    Jack, Clifford R., Jr.
    Fox, Nick C.
    [J]. NEUROIMAGE, 2009, 47 (04) : 1506 - 1513
  • [7] Cox T. F., 2001, MULTIDIMENSIONAL SCA
  • [8] Automatic classification of patients with Alzheimer's disease from structural MRI: A comparison of ten methods using the ADNI database
    Cuingnet, Remi
    Gerardin, Emilie
    Tessieras, Jerome
    Auzias, Guillaume
    Lehericy, Stephane
    Habert, Marie-Odile
    Chupin, Marie
    Benali, Habib
    Colliot, Olivier
    [J]. NEUROIMAGE, 2011, 56 (02) : 766 - 781
  • [9] Gerber S, 2009, LECT NOTES COMPUT SC, V5761, P305, DOI 10.1007/978-3-642-04268-3_38
  • [10] Core candidate neurochemical and imaging biomarkers of Alzheimer's disease
    Hampel, Harald
    Buerger, Katharina
    Teipel, Stefan J.
    Bokde, Arun L. W.
    Zetterberg, Henrik
    Blennow, Kaj
    [J]. ALZHEIMERS & DEMENTIA, 2008, 4 (01) : 38 - 48