Benchmarks for flexible and rigid transcription factor-DNA docking

被引:12
作者
Kim, RyangGuk [1 ]
Corona, Rosario I. [1 ]
Hong, Bo [2 ]
Guo, Jun-tao [1 ]
机构
[1] Univ N Carolina, Coll Comp & Informat, Dept Bioinformat & Genom, Charlotte, NC 28223 USA
[2] Georgia Inst Technol, Sch Elect & Comp Engn, Atlanta, GA 30332 USA
基金
美国国家科学基金会;
关键词
STRUCTURE-BASED PREDICTION; PROTEIN-PROTEIN; REGULATORY NETWORKS; ENERGY FUNCTION; BINDING SITES; RECOGNITION; EVOLUTION; CLASSIFICATION; REPRESSOR; SPECIFICITY;
D O I
10.1186/1472-6807-11-45
中图分类号
Q6 [生物物理学];
学科分类号
071011 ;
摘要
Background: Structural insight from transcription factor-DNA (TF-DNA) complexes is of paramount importance to our understanding of the affinity and specificity of TF-DNA interaction, and to the development of structure-based prediction of TF binding sites. Yet the majority of the TF-DNA complexes remain unsolved despite the considerable experimental efforts being made. Computational docking represents a promising alternative to bridge the gap. To facilitate the study of TF-DNA docking, carefully designed benchmarks are needed for performance evaluation and identification of the strengths and weaknesses of docking algorithms. Results: We constructed two benchmarks for flexible and rigid TF-DNA docking respectively using a unified nonredundant set of 38 test cases. The test cases encompass diverse fold families and are classified into easy and hard groups with respect to the degrees of difficulty in TF-DNA docking. The major parameters used to classify expected docking difficulty in flexible docking are the conformational differences between bound and unbound TFs and the interaction strength between TFs and DNA. For rigid docking in which the starting structure is a bound TF conformation, only interaction strength is considered. Conclusions: We believe these benchmarks are important for the development of better interaction potentials and TF-DNA docking algorithms, which bears important implications to structure-based prediction of transcription factor binding sites and drug design.
引用
收藏
页数:10
相关论文
共 68 条
[1]  
Aloy P, 1998, PROTEINS, V33, P535, DOI 10.1002/(SICI)1097-0134(19981201)33:4<535::AID-PROT6>3.0.CO
[2]  
2-D
[3]   BASIC LOCAL ALIGNMENT SEARCH TOOL [J].
ALTSCHUL, SF ;
GISH, W ;
MILLER, W ;
MYERS, EW ;
LIPMAN, DJ .
JOURNAL OF MOLECULAR BIOLOGY, 1990, 215 (03) :403-410
[4]   Issues in bioinformatics benchmarking: the case study of multiple sequence alignment [J].
Aniba, Mohamed Radhouene ;
Poch, Olivier ;
Thompson, Julie D. .
NUCLEIC ACIDS RESEARCH, 2010, 38 (21) :7353-7363
[5]   Gene Ontology: tool for the unification of biology [J].
Ashburner, M ;
Ball, CA ;
Blake, JA ;
Botstein, D ;
Butler, H ;
Cherry, JM ;
Davis, AP ;
Dolinski, K ;
Dwight, SS ;
Eppig, JT ;
Harris, MA ;
Hill, DP ;
Issel-Tarver, L ;
Kasarskis, A ;
Lewis, S ;
Matese, JC ;
Richardson, JE ;
Ringwald, M ;
Rubin, GM ;
Sherlock, G .
NATURE GENETICS, 2000, 25 (01) :25-29
[6]   Assessment of the optimization of affinity and specificity at proteinDNA interfaces [J].
Ashworth, Justin ;
Baker, David .
NUCLEIC ACIDS RESEARCH, 2009, 37 (10)
[7]   Computational approaches to study transcriptional regulation [J].
Babu, M. Madan .
BIOCHEMICAL SOCIETY TRANSACTIONS, 2008, 36 :758-765
[8]   Structure, evolution and dynamics of transcriptional regulatory networks [J].
Babu, M. Madan .
BIOCHEMICAL SOCIETY TRANSACTIONS, 2010, 38 :1155-1178
[9]   Structure and evolution of transcriptional regulatory networks [J].
Babu, MM ;
Luscombe, NM ;
Aravind, L ;
Gerstein, M ;
Teichmann, SA .
CURRENT OPINION IN STRUCTURAL BIOLOGY, 2004, 14 (03) :283-291
[10]   Diversity and Complexity in DNA Recognition by Transcription Factors [J].
Badis, Gwenael ;
Berger, Michael F. ;
Philippakis, Anthony A. ;
Talukder, Shaheynoor ;
Gehrke, Andrew R. ;
Jaeger, Savina A. ;
Chan, Esther T. ;
Metzler, Genita ;
Vedenko, Anastasia ;
Chen, Xiaoyu ;
Kuznetsov, Hanna ;
Wang, Chi-Fong ;
Coburn, David ;
Newburger, Daniel E. ;
Morris, Quaid ;
Hughes, Timothy R. ;
Bulyk, Martha L. .
SCIENCE, 2009, 324 (5935) :1720-1723