A CONTINUATION MULTIPLE SHOOTING METHOD FOR WASSERSTEIN GEODESIC EQUATION

被引:4
作者
Cui, Jianbo [1 ,2 ]
Dieci, Luca
Zhou, Haomin [1 ]
机构
[1] Georgia Inst Technol, Sch Math, Atlanta, GA 30332 USA
[2] Hong Kong Polytech Univ, Dept Appl Math, Kowloon, Hong Kong, Peoples R China
关键词
Hamiltonian flow; boundary value problem; optimal transport; multiple shooting method; OPTIMAL TRANSPORT DISTANCE; NUMERICAL-SOLUTION; ALGORITHM; VECTOR;
D O I
10.1137/21M142160X
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we propose a numerical method to solve the classic L-2-optimal trans-port problem. Our algorithm is based on the use of multiple shooting, in combination with a continuation procedure, to solve the boundary value problem associated to the transport problem. Based on the viewpoint of Wasserstein Hamiltonian flow with initial and target densities, our algorithm reflects the Hamiltonian structure of the underlying problem and exploits it in the numerical discretization. Several numerical examples are presented to illustrate the performance of the method.
引用
收藏
页码:A2918 / A2943
页数:26
相关论文
共 32 条
[1]  
Ascher U., 1988, NUMERICAL SOLUTION B
[2]  
Benamou J., 1999, Contemp. Math., V226, P1
[3]  
Benamou JD, 2000, NUMER MATH, V84, P375, DOI 10.1007/s002119900117
[4]   Numerical solution of the Optimal Transportation problem using the Monge-Ampere equation [J].
Benamou, Jean-David ;
Froese, Brittany D. ;
Oberman, Adam M. .
JOURNAL OF COMPUTATIONAL PHYSICS, 2014, 260 :107-126
[5]   BOUNDARY-REGULARITY OF MAPS WITH CONVEX POTENTIALS [J].
CAFFARELLI, LA .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1992, 45 (09) :1141-1151
[6]   An Efficient Algorithm for Matrix-Valued and Vector-Valued Optimal Mass Transport [J].
Chen, Yongxin ;
Haber, Eldad ;
Yamamoto, Kaoru ;
Georgiou, Tryphon T. ;
Tannenbaum, Allen .
JOURNAL OF SCIENTIFIC COMPUTING, 2018, 77 (01) :79-100
[7]   Wasserstein Hamiltonian flows [J].
Chow, Shui-Nee ;
Li, Wuchen ;
Zhou, Haomin .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2020, 268 (03) :1205-1219
[8]   Entropy Dissipation Semi-Discretization Schemes for Fokker-Planck Equations [J].
Chow, Shui-Nee ;
Dieci, Luca ;
Li, Wuchen ;
Zhou, Haomin .
JOURNAL OF DYNAMICS AND DIFFERENTIAL EQUATIONS, 2019, 31 (02) :765-792
[9]   A discrete Schrodinger equation via optimal transport on graphs [J].
Chow, Shui-Nee ;
Li, Wuchen ;
Zhou, Haomin .
JOURNAL OF FUNCTIONAL ANALYSIS, 2019, 276 (08) :2440-2469
[10]   TIME DISCRETIZATIONS OF WASSERSTEIN-HAMILTONIAN FLOWS [J].
Cui, Jianbo ;
Dieci, Luca ;
Zhou, Haomin .
MATHEMATICS OF COMPUTATION, 2022, 91 (335) :1019-1075