A highly accurate method to solve Fisher's equation

被引:41
作者
Bastani, Mehdi [2 ]
Salkuyeh, Davod Khojasteh [1 ]
机构
[1] Univ Guilan, Fac Math Sci, Rasht, Iran
[2] Univ Mohaghegh Ardabili, Dept Math, Ardebil, Iran
来源
PRAMANA-JOURNAL OF PHYSICS | 2012年 / 78卷 / 03期
关键词
Fisher's equation; compact finite difference; Taylor expansion series; total variation diminishing Runge-Kutta; numerical solutions; FINITE-DIFFERENCE SCHEMES; DIFFUSION EQUATION; RUNGE-KUTTA; WAVE; 6TH-ORDER;
D O I
10.1007/s12043-011-0243-8
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In this study, we present a new and very accurate numerical method to approximate the Fisher's-type equations. Firstly, the spatial derivative in the proposed equation is approximated by a sixth-order compact finite difference (CFD6) scheme. Secondly, we solve the obtained system of differential equations using a third-order total variation diminishing Runge-Kutta (TVD-RK3) scheme. Numerical examples are given to illustrate the efficiency of the proposed method.
引用
收藏
页码:335 / 346
页数:12
相关论文
共 35 条
[1]  
ABLOWITZ MJ, 1979, B MATH BIOL, V41, P835, DOI 10.1007/BF02462380
[2]   SOME NUMERICAL EXPERIMENTS ON FISHER EQUATION [J].
AGGARWAL, SK .
INTERNATIONAL COMMUNICATIONS IN HEAT AND MASS TRANSFER, 1985, 12 (04) :417-430
[3]   Numerical study of Fisher's reaction-diffusion equation by the Sinc collocation method [J].
Al-Khaled, K .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2001, 137 (02) :245-255
[4]  
[Anonymous], 1937, Bull. Univ. Mosc. Ser. Int. A, DOI DOI 10.1016/B978-0-08-092523-3.50014-9
[5]  
Aronson D.J., 1988, NONLINEAR DIFFUSION
[6]   NONLINEAR DIFFUSION EQUATION DESCRIBING POPULATION-GROWTH [J].
CANOSA, J .
IBM JOURNAL OF RESEARCH AND DEVELOPMENT, 1973, 17 (04) :307-313
[7]  
Carey G., 1995, Numer. Methods Partial, V11, P175, DOI [10.1002/num.1690110206, DOI 10.1002/NUM.1690110206]
[8]   UPWIND COMPACT FINITE-DIFFERENCE SCHEMES [J].
CHRISTIE, I .
JOURNAL OF COMPUTATIONAL PHYSICS, 1985, 59 (03) :353-368
[9]   A compact split-step finite difference method for solving the nonlinear Schrodinger equations with constant and variable coefficients [J].
Dehghan, Mehdi ;
Taleei, Ameneh .
COMPUTER PHYSICS COMMUNICATIONS, 2010, 181 (01) :43-51
[10]   The wave of advance of advantageous genes [J].
Fisher, RA .
ANNALS OF EUGENICS, 1937, 7 :355-369