Multi-label Whole Heart Segmentation Using CNNs and Anatomical Label Configurations

被引:119
作者
Payer, Christian [1 ]
Stern, Darko [2 ]
Bischof, Horst [1 ]
Urschler, Martin [2 ,3 ]
机构
[1] Graz Univ Technol, Inst Comp Graph & Vis, Graz, Austria
[2] Ludwig Boltzmann Inst Clin Forens Imaging, Graz, Austria
[3] BioTechMed Graz, Graz, Austria
来源
STATISTICAL ATLASES AND COMPUTATIONAL MODELS OF THE HEART: ACDC AND MMWHS CHALLENGES | 2018年 / 10663卷
基金
奥地利科学基金会;
关键词
Heart; Segmentation; Multi-label; Convolutional neural network; Anatomical label configurations;
D O I
10.1007/978-3-319-75541-0_20
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
We propose a pipeline of two fully convolutional networks for automatic multi-label whole heart segmentation from CT and MRI volumes. At first, a convolutional neural network (CNN) localizes the center of the bounding box around all heart structures, such that the subsequent segmentation CNN can focus on this region. Trained in an end-to-end manner, the segmentation CNN transforms intermediate label predictions to positions of other labels. Thus, the network learns from the relative positions among labels and focuses on anatomically feasible configurations. Results on the MICCAI 2017 Multi-Modality Whole Heart Segmentation (MM-WHS) challenge show that the proposed architecture performs well on the provided CT and MRI training volumes, delivering in a three-fold cross validation an average Dice Similarity Coefficient over all heart substructures of 88.9% and 79.0%, respectively. Moreover, on the MM-WHS challenge test data we rank first for CT and second for MRI with a whole heart segmentation Dice score of 90.8% and 87%, respectively, leading to an overall first ranking among all participants.
引用
收藏
页码:190 / 198
页数:9
相关论文
共 12 条
  • [1] [Anonymous], 2015, IEEE I CONF COMP VIS, DOI DOI 10.1109/ICCV.2015.123
  • [2] Complete valvular heart apparatus model from 4D cardiac CT
    Grbic, Sasa
    Ionasec, Razvan
    Vitanovski, Dime
    Voigt, Ingmar
    Wang, Yang
    Georgescu, Bogdan
    Navab, Nassir
    Comaniciu, Dorin
    [J]. MEDICAL IMAGE ANALYSIS, 2012, 16 (05) : 1003 - 1014
  • [3] Caffe: Convolutional Architecture for Fast Feature Embedding
    Jia, Yangqing
    Shelhamer, Evan
    Donahue, Jeff
    Karayev, Sergey
    Long, Jonathan
    Girshick, Ross
    Guadarrama, Sergio
    Darrell, Trevor
    [J]. PROCEEDINGS OF THE 2014 ACM CONFERENCE ON MULTIMEDIA (MM'14), 2014, : 675 - 678
  • [4] Kingma D. P., P 3 INT C LEARN REPR
  • [5] Long J, 2015, PROC CVPR IEEE, P3431, DOI 10.1109/CVPR.2015.7298965
  • [6] Payer Christian, 2016, Medical Image Computing and Computer-Assisted Intervention - MICCAI 2016. 19th International Conference. Proceedings: LNCS 9901, P230, DOI 10.1007/978-3-319-46723-8_27
  • [7] Flowing ConvNets for Human Pose Estimation in Videos
    Pfister, Tomas
    Charles, James
    Zisserman, Andrew
    [J]. 2015 IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV), 2015, : 1913 - 1921
  • [8] U-Net: Convolutional Networks for Biomedical Image Segmentation
    Ronneberger, Olaf
    Fischer, Philipp
    Brox, Thomas
    [J]. MEDICAL IMAGE COMPUTING AND COMPUTER-ASSISTED INTERVENTION, PT III, 2015, 9351 : 234 - 241
  • [9] Stern Darko, 2016, Medical Image Computing and Computer-Assisted Intervention - MICCAI 2016. 19th International Conference. Proceedings: LNCS 9901, P221, DOI 10.1007/978-3-319-46723-8_26
  • [10] Tompson J, 2014, Advances in neural information processing systems27, V1, P1799, DOI 10.5555/2968826.2969027