Aerobic anoxygenic phototrophic bacteria in Antarctic sea ice and seawater

被引:23
|
作者
Koh, Eileen Y. [1 ]
Phua, William [1 ]
Ryan, Ken G. [1 ]
机构
[1] Victoria Univ Wellington, Sch Biol Sci, Wellington 6140, New Zealand
来源
ENVIRONMENTAL MICROBIOLOGY REPORTS | 2011年 / 3卷 / 06期
关键词
PHOTOSYNTHETIC REACTION-CENTER; MICROBIAL COMMUNITIES; SURFACE WATERS; SALINE LAKES; CARBON-CYCLE; DIVERSITY; LIGHT; ABUNDANCE; GROWTH; OCEAN;
D O I
10.1111/j.1758-2229.2011.00286.x
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Aerobic anoxygenic phototrophs are obligate aerobes with unusually high concentrations of carotenoids, low cellular contents of bacteriochlorophyll-a and they lack light-harvesting complex II. In this study, sea ice and seawater samples were collected from six different sites in the Ross Sea, Antarctica. Using a combination of primers for pufM (which encodes a pigment-binding protein subunit of the reaction centre complex), clone libraries of DNA and cDNA were created and a total of 63 positive clones were obtained from three sites, all clustering within the a-Proteobacteria. Fifty-three of these clones were from seawater. The remaining clones were from sea ice and all were found in the middle and bottom sections of the ice. These sea ice bacteria may favour the lower part of the ice matrix where irradiance is low. This report highlights the first findings of AAnPs in antarctic sea ice and seawater within the Ross Sea Region.
引用
收藏
页码:710 / 716
页数:7
相关论文
共 50 条
  • [21] Distribution of aerobic anoxygenic phototrophic bacteria in glacial lakes of northern Europe
    Masin, Michal
    Cuperova, Zuzana
    Hojerova, Eva
    Salka, Ivette
    Grossart, Hans-Peter
    Koblizek, Michal
    AQUATIC MICROBIAL ECOLOGY, 2012, 66 (01) : 77 - 86
  • [22] Aerobic Anoxygenic Phototrophic Bacteria Promote the Development of Biological Soil Crusts
    Tang, Kai
    Jia, Lijuan
    Yuan, Bo
    Yang, Shanshan
    Li, Heng
    Meng, Jianyu
    Zeng, Yonghui
    Feng, Fuying
    FRONTIERS IN MICROBIOLOGY, 2018, 9
  • [23] Diverse Arrangement of Photosynthetic Gene Clusters in Aerobic Anoxygenic Phototrophic Bacteria
    Zheng, Qiang
    Zhang, Rui
    Koblizek, Michal
    Boldareva, Ekaterina N.
    Yurkov, Vladimir
    Yan, Shi
    Jiao, Nianzhi
    PLOS ONE, 2011, 6 (09):
  • [24] A new environment for aerobic anoxygenic phototrophic bacteria: biological soil crusts
    Csotonyi, Julius T.
    Swiderski, Jolantha
    Stackebrandt, Erko
    Yurkov, Vladimir
    ENVIRONMENTAL MICROBIOLOGY REPORTS, 2010, 2 (05): : 651 - 656
  • [25] Response of aerobic anoxygenic phototrophic bacteria to limitation and availability of organic carbon
    Piwosz, Kasia
    Villena-Alemany, Cristian
    Calkiewicz, Joanna
    Mujakic, Izabela
    Nahlik, Vit
    Dean, Jason
    Koblizek, Michal
    FEMS MICROBIOLOGY ECOLOGY, 2024, 100 (07)
  • [26] Abundance of Common Aerobic Anoxygenic Phototrophic Bacteria in a Coastal Aquaculture Area
    Sato-Takabe, Yuki
    Nakao, Hironori
    Kataoka, Takafumi
    Yokokawa, Taichi
    Hamasaki, Koji
    Ohta, Kohei
    Suzuki, Satoru
    FRONTIERS IN MICROBIOLOGY, 2016, 7
  • [27] Biotechnology of Anoxygenic Phototrophic Bacteria
    Frigaard, Niels-Ulrik
    ANAEROBES IN BIOTECHNOLOGY, 2016, 156 : 139 - 154
  • [28] Light enhances the growth rates of natural populations of aerobic anoxygenic phototrophic bacteria
    Isabel Ferrera
    Olga Sánchez
    Eva Kolářová
    Michal Koblížek
    Josep M Gasol
    The ISME Journal, 2017, 11 : 2391 - 2393
  • [29] Light enhances the growth rates of natural populations of aerobic anoxygenic phototrophic bacteria
    Ferrera, Isabel
    Sanchez, Olga
    Kolarova, Eva
    Koblizek, Michal
    Gasol, Josep M.
    ISME JOURNAL, 2017, 11 (10): : 2391 - 2393
  • [30] Photosynthetic characteristics of marine aerobic anoxygenic phototrophic bacteria Roseobacter and Erythrobacter strains
    Yuki Sato-Takabe
    Koji Hamasaki
    Koji Suzuki
    Archives of Microbiology, 2012, 194 : 331 - 341