Artificial intelligence in liver ultrasound

被引:12
作者
Cao, Liu-Liu [1 ]
Peng, Mei [1 ]
Xie, Xiang [1 ]
Chen, Gong-Quan [2 ]
Huang, Shu-Yan [3 ]
Wang, Jia-Yu [4 ]
Jiang, Fan [1 ,6 ]
Cui, Xin-Wu [4 ]
Dietrich, Christoph F. [5 ]
机构
[1] Anhui Med Univ, Hosp 2, Dept Med Ultrasound, Hefei 230601, Anhui, Peoples R China
[2] Hubei Minzu Univ, Minda Hosp, Dept Med Ultrasound, Enshi 445000, Hubei, Peoples R China
[3] First Peoples Hosp Huaihua, Dept Med Ultrasound, Huaihua 418000, Hunan, Peoples R China
[4] Huazhong Univ Sci & Technol, Tongji Hosp, Tongji Med Coll, Dept Med Ultrasound, Wuhan 430030, Hubei, Peoples R China
[5] Klin Hirslanden Beau Site Salem & Permanence, Dept Allgemeine Innere Med, CH-3626 Bern, Switzerland
[6] Anhui Med Univ, Hosp 2, Dept Med Ultrasound, 678 Furong Rd, Hefei 230601, Anhui, Peoples R China
基金
中国国家自然科学基金;
关键词
Machine learning; Deep learning; Radiomics; Diffuse liver diseases; Focal liver diseases; Ultrasound; HEPATOCELLULAR-CARCINOMA; NEURAL-NETWORK; QUANTITATIVE ULTRASOUND; DIAGNOSIS; ALGORITHM; DISEASE; CLASSIFICATION; SURVIVAL; LESIONS; GRADE;
D O I
10.3748/wjg.v28.i27.3398
中图分类号
R57 [消化系及腹部疾病];
学科分类号
摘要
Artificial intelligence (AI) is playing an increasingly important role in medicine, especially in the field of medical imaging. It can be used to diagnose diseases and predict certain statuses and possible events that may happen. Recently, more and more studies have confirmed the value of AI based on ultrasound in the evaluation of diffuse liver diseases and focal liver lesions. It can assess the severity of liver fibrosis and nonalcoholic fatty liver, differentially diagnose benign and malignant liver lesions, distinguish primary from secondary liver cancers, predict the curative effect of liver cancer treatment and recurrence after treatment, and predict microvascular invasion in hepatocellular carcinoma. The findings from these studies have great clinical application potential in the near future. The purpose of this review is to comprehensively introduce the current status and future perspectives of AI in liver ultrasound.
引用
收藏
页码:3398 / 3409
页数:12
相关论文
共 59 条
  • [1] A Survey of Deep-Learning Applications in Ultrasound: Artificial Intelligence-Powered Ultrasound for Improving Clinical Workflow
    Akkus, Zeynettin
    Cai, Jason
    Boonrod, Arunnit
    Zeinoddini, Atefeh
    Weston, Alexander D.
    Philbrick, Kenneth A.
    Erickson, Bradley J.
    [J]. JOURNAL OF THE AMERICAN COLLEGE OF RADIOLOGY, 2019, 16 (09) : 1318 - 1328
  • [2] Application of surveillance programs for hepatocellular carcinoma in the Asia-Pacific Region
    Amarapurkar, Deepak
    Han, Kwang-Hyub
    Chan, Henry Lik-Yuen
    Ueno, Yoshiyuki
    [J]. JOURNAL OF GASTROENTEROLOGY AND HEPATOLOGY, 2009, 24 (06) : 955 - 961
  • [3] A History of the Shift Toward Full Computerization of Medicine
    Ambinder, Edward P.
    [J]. JOURNAL OF ONCOLOGY PRACTICE, 2005, 1 (02) : 54 - 56
  • [4] Fuzzy logic algorithm for quantitative tissue characterization of diffuse liver diseases from ultrasound images
    Badawi, AM
    Derbala, AS
    Youssef, ABM
    [J]. INTERNATIONAL JOURNAL OF MEDICAL INFORMATICS, 1999, 55 (02) : 135 - 147
  • [5] A critical appraisal of the use of ultrasound in hepatic steatosis
    Ballestri, Stefano
    Nascimbeni, Fabio
    Lugari, Simonetta
    Lonardo, Amedeo
    Francica, Giampiero
    [J]. EXPERT REVIEW OF GASTROENTEROLOGY & HEPATOLOGY, 2019, 13 (07) : 667 - 681
  • [6] An algorithm for the grading of activity in chronic hepatitis C
    Bedossa, P
    Poynard, T
    [J]. HEPATOLOGY, 1996, 24 (02) : 289 - 293
  • [7] Bellman R., 1978, INTRO ARTIFICIAL INT
  • [8] CT Image-based Decision Support System for Categorization of Liver Metastases Into Primary Cancer Sites: Initial Results
    Ben-Cohen, Avi
    Klang, Eyal
    Diamant, Idit
    Rozendorn, Noa
    Raskin, Stephen P.
    Konen, Eli
    Amitai, Michal Marianne
    Greenspan, Hayit
    [J]. ACADEMIC RADIOLOGY, 2017, 24 (12) : 1501 - 1509
  • [9] Brattain LJ, 2018, IEEE ENG MED BIO, P3472, DOI 10.1109/EMBC.2018.8513011
  • [10] Liver Fat Assessment in Multiview Sonography Using Transfer Learning With Convolutional Neural Networks
    Byra, Michal
    Han, Aiguo
    Boehringer, Andrew S.
    Zhang, Yingzhen N.
    O'Brien, William D., Jr.
    Erdman, John W., Jr.
    Loomba, Rohit
    Sirlin, Claude B.
    Andre, Michael
    [J]. JOURNAL OF ULTRASOUND IN MEDICINE, 2022, 41 (01) : 175 - 184